使用Keras Tuner进行自动超参数调优的实用教程
在本文中将介绍如何使用 KerasTuner,并且还会介绍其他教程中没有的一些技巧,例如单独调整每一层中的参数或与优化器一起调整学习率等。Keras-Tuner 是一个可帮助您优化神经网络并找到接近最优的超参数集的工具,它利用了高级搜索和优化方法,例如 HyperBand 搜索和贝叶斯优化。所以只需要定义搜索空间,Keras-Tuner 将负责繁琐的调优过程,这要比手动的Grid Search强的多!
加载数据
我们这里使用手语数据集,假设想在图像分类数据集上训练 CNN,我们将使用 KerasTuner 优化神经网络。
首先,使用 pip 安装 Keras-Tuner 库并导入必要的库。
!pip install keras-tuner
然后导入需要的包:
import keras_tuner
from tensorflow import keras
from keras import backend as K
from tensorflow.keras import layers, losses
import numpy as np
import matplotlib.pyplot as plt
import os
下面我们就需要加载数据, 我们选择使用美国手语 (ASL) 数据集,该数据集可在 Kaggle 上下载。它包含代表手语的 400x400 RGB 手势图像。它共有 37 个类,每个类有 70 张图像。我们将训练一个 CNN 模型来对这些手势进行分类。
完整文章:
https://avoid.overfit.cn/post/bbeec4bc93a64a928faabac7f238d7fa
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)