学习偏态分布的相关知识和原理的4篇论文推荐

偏态分布(skewness distribution)指频数分布的高峰位于一侧,尾部向另一侧延伸的分布。偏态分布是与“正态分布”相对,分布曲线左右不对称的数据次数分布,是连续随机变量概率分布的一种。可以通过峰度和偏度的计算,衡量偏态的程度。

1、The Generalized-Alpha-Beta-Skew-Normal Distribution: Properties and Applications

Sricharan Shah, Subrata Chakraborty, Partha Jyoti Hazarika, M. Masoom Ali

 

在这篇论文中,引入了广义版的Alpha Beta偏斜的正态分布,研究了它的一些基本性质。本文还研究了该分布的扩展,通过比较Akaike信息标准(AIC)和贝叶斯信息标准(BIC)的值与其他一些已知的相关分布的值以进行更好的模型选择的值。并且验证了所提出的分布的适当性。

完整文章:

https://avoid.overfit.cn/post/44f6a754a3324df48dec789c5f4a02b7

posted @ 2022-08-31 10:21  deephub  阅读(118)  评论(0编辑  收藏  举报