CVPR 2022上人脸识别相关的论文分类整理

人脸识别是AI研究的一个重要的方向,CVPR 2022也有很多相关的论文,本篇文章将针对不同的应用分类进行整理,希望对你有帮助

人脸识别

人脸识是一个热门话题,在当前的基准测试中要以相当大的提升击败 现有的SOTA模型变得越来越困难。

越来越多的开放数据可以用于训练,在百万级规模的数据上进行训练的一个主要问题是:最终的全连接层随着身份的数量线性扩展,会导致每次迭代时内存占用巨大并且反向传播时非常慢。一种旨在缓解这种情况的方法是 Partial FC [2](在今年CVPR上发表之前就已经非常流行了)它已经包含在insightface的repo中。该方法试图逼近现在标准的训练人脸识别方法(如CosFace、ArcFace等)的最后一层。为了达到更好的缩放人脸识别的目的,Wang等人(来自阿里巴巴)的方法[3]使用名为动态分类池(Dynamic Class Pool)的来替代最后的FC层,并通过更好的数据加载器进行了进一步的改进(见下图)。

另外两篇关于人脸识别的论文:He at al. [4]试图将深度和反照率从人脸图像中分离出来,提高使用 3D 信息的识别能力。它通过引入带有两个辅助网络的 3D 人脸重建损失来实现这一点。现在又很多方法都在试图将面部整合成 3D 信息(NeRF的论文中也看到相同的内容)。Phan和Nguyen的[5]方法也可以在重度遮挡人脸(太阳镜、口罩等)的人脸图片上验证,而且不需要对模型进行再训练。

[4] 使用人脸的 3D 重建来改善人脸识别。

[5] 提出了一种巧妙的方法来使用未被遮挡的面部部分进行面部验证(它不会重新训练模型)。

 

完整文章

https://avoid.overfit.cn/post/9c15fe50f63e48739e2e8c1f40b5c76c

posted @ 2022-08-12 10:57  deephub  阅读(301)  评论(0编辑  收藏  举报