6个可解释AI (XAI)的Python框架推荐

随着人工智能的发展为了解决具有挑战性的问题,人们创造了更复杂、更不透明的模型。AI就像一个黑匣子,能自己做出决定,但是人们并不清楚其中缘由。建立一个AI模型,输入数据,然后再输出结果,但有一个问题就是我们不能解释AI为何会得出这样的结论。需要了解AI如何得出某个结论背后的原因,而不是仅仅接受一个在没有上下文或解释的情况下输出的结果。

可解释性旨在帮助人们理解:

  • 如何学习的?
  • 学到了什么?
  • 针对一个特定输入为什么会做出如此决策?
  • 决策是否可靠?

在本文中,我将介绍6个用于可解释性的Python框架。

SHAP

SHapley Additive explanation (SHapley Additive explanation)是一种解释任何机器学习模型输出的博弈论方法。它利用博弈论中的经典Shapley值及其相关扩展将最优信贷分配与局部解释联系起来(详见论文的细节和引用)。

数据集中每个特征对模型预测的贡献由Shapley值解释。Lundberg和Lee的SHAP算法最初发表于2017年,这个算法被社区在许多不同的领域广泛采用。

使用pip或conda安装shap库。

  1. # install with pip
  2. pip install shap
  3. # install with conda
  4. conda install -c conda-forge shap

使用Shap库构建瀑布图

使用Shap库构建Beeswarm图

使用Shap库构建部分依赖图

LIME

完整文章:

https://avoid.overfit.cn/post/1d08a70ed36a41a481d9f2a66b01971a

posted @   deephub  阅读(284)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示