Residual, BottleNeck, Inverted Residual, MBConv的解释和Pytorch实现
上篇ConvNext的文章有小伙伴问BottleNeck,Inverted Residual的区别,所以找了这篇文章,详细的解释一些用到的卷积块,当作趁热打铁吧
在介绍上面的这些概念之间,我们先创建一个通用的 conv-norm-act 层,这也是最基本的卷积块。
fromfunctoolsimportpartial
fromtorchimportnn
classConvNormAct(nn.Sequential):
def__init__(
self,
in_features: int,
out_features: int,
kernel_size: int,
norm: nn.Module = nn.BatchNorm2d,
act: nn.Module = nn.ReLU,
**kwargs
):
super().__init__(
nn.Conv2d(
in_features,
out_features,
kernel_size=kernel_size,
padding=kernel_size//2,
),
norm(out_features),
act(),
)
Conv1X1BnReLU = partial(ConvNormAct, kernel_size=1)
Conv3X3BnReLU = partial(ConvNormAct, kernel_size=3)
importtorch
x = torch.randn((1, 32, 56, 56))
Conv1X1BnReLU(32, 64)(x).shape
#torch.Size([1, 64, 56, 56])
残差连接
ResNet 中提出并使用了残差连接, 这个想法是将层的输入与层的输出相加,输出 = 层(输入)+ 输入。下图可以帮助您将其可视化。但是,它只使用了一个 + 运算符。残差操作提高了梯度在乘法器层上传播的能力,允许有效地训练超过一百层的网络。
在PyTorch中,我们可以轻松地创建一个ResidualAdd层
fromtorchimportnn
fromtorchimportTensor
classResidualAdd(nn.Module):
def__init__(self, block: nn.Module):
super().__init__()
self.block = block
defforward(self, x: Tensor) ->Tensor:
res = x
x = self.block(x)
x += res
returnx
ResidualAdd(
nn.Conv2d(32, 32, kernel_size=1)
)(x).shape
捷径 Shortcut
有时候残差没有相同的输出维度,所以无法将它们相加。所以就需要使用conv(带+的黑色箭头)来投影输入,以匹配输出的特性
完整文章
https://avoid.overfit.cn/post/af49b27f50bb416ca829b4987e902874