图像预训练模型的起源解说和使用示例

三十多年来,许多研究人员在图像识别算法和图像数据方面积累了丰富的知识。如果你对图像训练感兴趣但不知道从哪里开始,这篇文章会是一个很好的开始。这篇文章简要介绍了过去的演变,并总结了现在的一些热门话题。

  • ImageNet
  • 预训练模型
  • 迁移学习(热门话题)
  • 使用预训练模型识别未知图像
  • PyTorch

ImageNet 的起源

在 2000 年代初期,大多数 AI 研究人员都专注于图像分类问题的模型算法,但缺乏数据样本,研究人员需要大量图像和相应的标签来训练模型。这激发了 ImageNet 的创建。

ImageNet 由斯坦福大学的人工智能研究员李飞飞老师构思和带头组建。2007 年,当她开始构思 ImageNet 的想法时,她会见了普林斯顿大学教授 Christiane Fellbaum(WordNet 的创建者之一),并讨论了该项目。WordNet 是用于名词、动词、形容词和副词之间语义关系的词汇自然语言处理 (NLP) 数据库。它有 155,327 个词,组织在 175,979 个同义词组中,称为同义词组(有些词只有一个同义词组,有些词有几个同义词组)。如果在 WordNet 中将图像附加到单词上不是很好吗?这就是 ImageNet 的起源。ImageNet 将成百上千的图像与 WordNet 中的同义词集相关联。从那时起,ImageNet 在计算机视觉和深度学习的进步中发挥了重要作用。这些数据可供研究人员免费用于非商业用途。

 

完整文章:

https://www.overfit.cn/post/63db6dc2267c499bb5c106edf0c61d9d

posted @ 2022-04-22 11:19  deephub  阅读(171)  评论(0编辑  收藏  举报