自动化的机器学习:5个常用AutoML 框架介绍

AutoML 可以为预测建模问题自动找到数据准备、模型和模型超参数的最佳组合,本文整理了5个最常见且被熟知的开源AutoML 框架。

AutoML框架执行的任务可以被总结成以下几点:

  • 预处理和清理数据。
  • 选择并构建适当的特征。
  • 选择合适的模型。
  • 优化模型超参数。
  • 设计神经网络的拓扑结构(如果使用深度学习)。
  • 机器学习模型的后处理。
  • 结果的可视化和展示。

在本文中,我们将介绍以下5 个开源 autoML 库或框架:

  • Auto-Sklearn
  • TPOT
  • Hyperopt Sklearn
  • Auto-Keras
  • H2O AutoML

完整文章:

https://www.overfit.cn/post/a5f1160b23ad4fea914ed394254f845a

posted @ 2022-04-11 10:24  deephub  阅读(328)  评论(0编辑  收藏  举报