TensorBoard的最全使用教程:看这篇就够了
机器学习通常涉及在训练期间可视化和度量模型的性能。有许多工具可用于此任务。在本文中,我们将重点介绍 TensorFlow 的开源工具套件,称为 TensorBoard,虽然他是TensorFlow 的一部分,但是可以独立安装,并且服务于Pytorch等其他的框架。
什么是 TensorBoard?
TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中。TensorBoard 的主要功能包括:
- 可视化模型的网络架构
- 跟踪模型指标,如损失和准确性等
- 检查机器学习工作流程中权重、偏差和其他组件的直方图
- 显示非表格数据,包括图像、文本和音频
- 将高维嵌入投影到低维空间
TensorBoard算是包含在 TensorFlow中的一个子服务。TensorFlow 库是一个专门为机器学习应用程序设计的开源库。Google Brain 于 2011 年构建了较早的 DistBelief 系统。随着其用户群的快速增长,它被简化并重构为我们现在称为 Tensorflow 的库。TensorFlow 随后于 2015 年向公众发布。TensorBoard刚出现时只能用于检查TensorFlow的指标和TensorFlow模型的可视化,但是后来经过多方的努力其他深度学习框架也可以使用TensorBoard的功能,例如Pytorch已经抛弃了自家的visdom(听到过这个名字的人应该都不多了吧)而全面支持TensorBoard。
如何安装 TensorBoard
TensorBoard 包含在 TensorFlow 库中,所以如果我们成功安装了 TensorFlow,我们也可以使用 TensorBoard。要单独安装 TensorBoard 可以使用如下命令:
pip install tensorboard
需要注意的是:因为TensorBoard 依赖Tensorflow ,所以会自动安装Tensorflow的最新版
完整文章
https://www.overfit.cn/post/68f56127b3094cae88010203beba76d8