高斯函数、高斯积分和正态分布
正态分布是高斯概率分布。高斯概率分布是反映中心极限定理原理的函数,该定理指出当随机样本足够大时,总体样本将趋向于期望值并且远离期望值的值将不太频繁地出现。高斯积分是高斯函数在整条实数线上的定积分。这三个主题,高斯函数、高斯积分和高斯概率分布是这样交织在一起的,所以我认为最好尝试一次性解决这三个主题(但是我错了,这是本篇文章的不同主题)。本篇文章我们首先将研究高斯函数的一般定义是什么,然后将看一下高斯积分,其结果对于确定正态分布的归一化常数是非常必要的。最后我们将使用收集的信息理解,推导出正态分布方程。
首先,让我们了解高斯函数实际上是什么。高斯函数是将指数函数 exp(x) 与凹二次函数(例如 -(ax^2+bx+c) 或 -(ax^2+bx) 或只是-ax^2组成的函数。结果是一系列呈现“钟形曲线”的形状的函数。
两个高斯函数的图。第一个高斯(绿色)的λ=1和a=1。第二个(橙色)λ=2和a=1.5。两个函数都不是标准化的。也就是说,曲线下的面积不等于1。
大多数人都熟悉这类曲线是因为它们在概率和统计中被广泛使用,尤其是作为正态分布随机变量的概率密度函数。在这些情况下,函数具有的系数和参数既可以缩放“钟形”的振幅,改变其标准差(宽度),又可以平移平均值,所有这一切都是在曲线下的面积进行归一化(缩放钟形,使曲线下的面积总是等于1)的同时进行的。结果是一个高斯函数包含了一大堆的参数来影响这些结果。
如果将其认为是均值 = μ 且标准差 = σ 的正态分布方程。将其与高斯 λ exp(-ax^2) 的一般形式进行比较,我们可以看到:
- (x - μ)^2表示的是均值μ如何在x轴上左右平移图像,这就是均值要做的。如果μ=0,那么图的中心为0。
- σ^2,是一个测量随机变量的方差,也就是说数据是如何分散的,当我们使用a=1/(2σ^2)缩小或扩大图形时,我们希望同时缩放图形使用λ=1/√2πσ^2。这样图下的面积才能保持为1。
前导系数 λ 有时表示为 1/Z,其中 Z=√2πσ^2,正是这样的一个结果将我们带到了本文的主要观点之一:√2πσ^2有时被称为一个自变量的正态分布的归一化常数,而1/√2πσ2则被称为归一化常数。在这两种情况下,公式中都有 π,它是从哪里来的?它通常与圆、径向对称和/或极坐标相关联。单个变量的函数如何以 π 作为其在前导系数中的归一化参数之一呢?
可以参考我们以前的文章,里面有非常详细的描述
完整文章:
https://www.overfit.cn/post/ead43bb483024034bd397d6fc63b53eb