2022 年 1 月推荐阅读的四篇深度学习论文
自举元学习到深度学习的时间序列预测,外推与泛化之间的关系与 Ridge Rider 探索多样化最优
‘Bootstrapped Meta-Learning’
Flennerhag et al. (2021) | 📝 https://arxiv.org/pdf/2109.04504.pdf建议通过运行内部循环稍长一点来构建所谓的自举目标,然后将由此产生的网络作为教师为视野较短的学生提供训练服务。与 DQN 类似,自举目标与计算图分离,只是在损失计算中充当固定量。论文中说到,该方法基本上将元学习方法向前进行了推进,通过比较专家和学生的度量可以进一步控制元目标的曲率。在一组测试的RL 实验中,作者表明,尽管视野很短,但自举可以实现快速的探索适应,并且它优于具有较长视野的普通元梯度。与 STACX 元梯度代理一起,自举元梯度提供了一种新的 ATARI SOTA,也可以应用于多任务少样本学习。总而言之,这项工作为如何积极地进行元学习问题公式开辟了许多新视角。
完整文章
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)