多分类任务的混淆矩阵
今天我将讨论如何在多分类中使用混淆矩阵评估模型的性能。
什么是混淆矩阵?
它显示了实际值和预测值之间的差异。它告诉我们有多少数据点被正确预测,哪些数据点没有被正确预测。对于多分类来说,它是一个 N * N 矩阵,其中 n 是编号。输出列中的类别,也称为目标属性。一二分类任务中包含了 2 个类也就是一个 22 矩阵,一般情况下介绍混淆矩阵都会以二分类为例。如果有 3 个类呢?那么将得到一个 33 矩阵依此类推。通过上面描述我们知道,混淆矩阵的类将具有相同数量的行和列。
下面让我们尝试了解一些常用术语,有 TP(True Positive)、FP(False Positive)、False Positive 和 FN(False Negative)。
我们将使用一个 3 x 3 矩阵,我们将使用我将向您展示的技巧计算 TP、TN、FP、FN 值。这个技巧也可以应用于 44、55…N*N 矩阵。
考虑这个混淆矩阵在下图 1 中的数据集的输出列中具有 A、B、C 类。
我们将尝试计算 A 类的TP(True Positive)、FP(False Positive)、False Positive 和 FN(False Negative)的值
完整文章
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了