通过遗传算法进行超参数调整和自动时间序列建模
在以前的文章中我们介绍过一些基于遗传算法的知识,本篇文章将使用遗传算法处理机器学习模型和时间序列数据。
超参数调整(TPOT )
自动机器学习(Auto ML)通过自动化整个机器学习过程,帮我们找到最适合预测的模型,对于机器学习模型来说Auto ML可能更多的意味着超参数的调整和优化。
在这里我们使用python的一个名叫Tpot 的包来操作,TPOT 是建立在 scikit-learn 之上,虽然还是处在开发中,但是他的功能已经可以帮助我们了解这些概念了,下图显示了 Tpot 的工作原理:
时间序列数据建模(AutoTS)
在Python中有一个名叫 AutoTS 的包可以处理时间序列数据,我们从它开始
完整文章:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)