线性回归简介
1 线性回归应用场景
-
房价预测
-
销售额度预测
-
贷款额度预测
举例:
2 什么是线性回归
2.1 定义与公式
线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。
- 特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归
- 线性回归用矩阵表示举例
那么怎么理解呢?我们来看几个例子
- 期末成绩:0.7×考试成绩+0.3×平时成绩
- 房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率
上面两个例子,我们看到特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型。
2.2 线性回归的特征与目标的关系分析
线性回归当中主要有两种模型,一种是线性关系,另一种是非线性关系。在这里我们只能画一个平面更好去理解,所以都用单个特征或两个特征举例子。
-
线性关系
- 单变量线性关系:
-
多变量线性关系
注释:单特征与目标值的关系呈直线关系,或者两个特征与目标值呈现平面的关系
更高维度的我们不用自己去想,记住这种关系即可
-
非线性关系
注释:为什么会这样的关系呢?原因是什么?
如果是非线性关系,那么回归方程可以理解为:
w_1x_1+w_2x_2^2+w_3x_3^2w1x1+w2x22+w3x32