使用MindSpore计算旋转矩阵

技术背景

坐标变换、旋转矩阵,是在线性空间常用的操作,在分子动力学模拟领域有非常广泛的应用。比如在一个体系中切换坐标,或者对整体分子进行旋转平移等。如果直接使用Numpy,是很容易可以实现的,只要把相关的旋转矩阵写成numpy.array的形式即可。但是在一些使用GPU计算的深度学习框架中,比如MindSpore框架,则是不能直接支持这样操作的。因此我们需要探索一下如何在MindSpore框架中实现一个简单的旋转矩阵,并使用旋转矩阵进行一些旋转操作。

Jax.numpy旋转矩阵

我们先介绍一下在常用的Numpy库中是如何实现一个旋转矩阵的,这里为了演示方便,简化编程工作量,我们选择用Jax中所集成的Numpy来进行试验和对比。这里我们计算的场景是,给定一个N原子的分子体系,其空间维度为D=3,我们通过给定三个欧拉角,来旋转整个分子系统。这就需要我们分别定义三个维度的旋转矩阵\(R_x(\phi),R_y(\psi),R_z(\theta)\),分别表示绕\(X\)轴旋转\(\phi\)的角度、绕\(Y\)轴旋转\(\psi\)的角度,以及绕\(Z\)轴旋转\(\theta\)的角度。如果使用Jax来进行编程,那我们得到的旋转矩阵应该是如下的形式:

def rotation(psi,phi,theta,v):
    """ Module of rotation in 3 Euler angles. """
    RY = np.array([[np.cos(psi),0,-np.sin(psi)],
                   [0, 1, 0],
                   [np.sin(psi),0,np.cos(psi)]])
    RX = np.array([[1,0,0],
                   [0,np.cos(phi),-np.sin(phi)],
                   [0,np.sin(phi),np.cos(phi)]])
    RZ = np.array([[np.cos(theta),-np.sin(theta),0],
                   [np.sin(theta),np.cos(theta),0],
                   [0,0,1]])
    return np.dot(RZ,np.dot(RX,np.dot(RY,v)))

multi_rotation = jit(vmap(rotation,(None,None,None,0)))

接下来使用这个旋转矩阵来展示一个具体的案例:

In [1]: from jax import numpy as np
In [2]: from jax import jit, vmap

In [3]: def rotation(psi,phi,theta,v):
   ...:     """ Module of rotation in 3 Euler angles. """
   ...:     RY = np.array([[np.cos(psi),0,-np.sin(psi)],
   ...:                    [0, 1, 0],
   ...:                    [np.sin(psi),0,np.cos(psi)]])
   ...:     RX = np.array([[1,0,0],
   ...:                    [0,np.cos(phi),-np.sin(phi)],
   ...:                    [0,np.sin(phi),np.cos(phi)]])
   ...:     RZ = np.array([[np.cos(theta),-np.sin(theta),0],
   ...:                    [np.sin(theta),np.cos(theta),0],
   ...:                    [0,0,1]])
   ...:     return np.dot(RZ,np.dot(RX,np.dot(RY,v)))
   ...: 

In [4]: multi_rotation = jit(vmap(rotation,(None,None,None,0)))

In [5]: import numpy as onp

In [6]: v=onp.random.random((3,3))

In [7]: v
Out[7]: 
array([[0.97911664, 0.48098486, 0.44966794],
       [0.25350689, 0.50949849, 0.77506796],
       [0.24502845, 0.23313826, 0.72014647]])

In [8]: multi_rotation(onp.pi, onp.pi, 0, v)
Out[8]: 
DeviceArray([[-0.97911656, -0.4809849 ,  0.449668  ],
             [-0.25350684, -0.50949854,  0.7750679 ],
             [-0.24502839, -0.23313832,  0.7201465 ]], dtype=float32)

在这个案例中,我们给定了绕X和Y轴分别旋转180度的操作,而对Z轴则保持相对静止。可想而知我们所得到的结果会使得X和Y的值分别取负号,而Z的值保持不变,上述的测试结果也表明这个计算过程是正确的。

MindSpore旋转矩阵

在MindSpore深度学习框架中,有一点不同于Numpy和Jax的是,MindSpore的Tensor中的元素不能包含有object。在上一个章节的案例中其实我们可以发现,旋转矩阵的元素中包含了一些正弦余弦函数的使用。假如我们使用MindSpore去计算正余弦函数值的话,得到的输出结果会是一个Tensor,而不是一个常数。比较尴尬的是,MindSpore的Tensor只能使用常数来初始化,这里矛盾点就出现了。那么我们只有两个途径可以解决这个问题:将输入的角度转化成普通numpy的格式,使用cpu上的numpy计算完成旋转矩阵之后,在输出的时候再转化为MindSpore的Tensor。而另一操作就是,先把所有的旋转矩阵的元素计算好之后,将这些元素concat起来变成一个一维的Tensor,再对该Tensor做一个reshape,就可以得到我们想要的旋转矩阵所对应的Tensor。在如下的示例中我们使用的是第二种方案:

In [1]: from mindspore import ops, Tensor

In [2]: import mindspore as ms

In [3]: import numpy as np

In [4]: psi = Tensor([np.pi], ms.float32)

In [5]: phi = Tensor([np.pi], ms.float32)

In [6]: theta = Tensor([0.], ms.float32)

In [7]: v = Tensor(np.random.random((3,3)), ms.float32)

In [8]: v
Out[8]: 
Tensor(shape=[3, 3], dtype=Float32, value=
[[ 4.51581478e-01,  7.52180338e-01,  2.84639597e-01],
 [ 8.46439958e-01,  2.95659006e-01,  1.81022584e-01],
 [ 8.94563913e-01,  2.25287616e-01,  1.71754003e-01]])

In [9]: zero = Tensor([0.], ms.float32)

In [10]: one = Tensor([1.], ms.float32)

In [11]: def rotation(psi, phi, theta, v):
    ...:     RY = ops.Concat(-1)((ops.Cos()(psi), zero, -ops.Sin()(psi),
    ...:                          zero, one, zero,
    ...:                          ops.Sin()(psi), zero, ops.Cos()(psi)))
    ...:     RY = RY.reshape(3, 3)
    ...:     RX = ops.Concat(-1)((one, zero, zero,
    ...:                          zero, ops.Cos()(phi), -ops.Sin()(phi),
    ...:                          zero, ops.Sin()(phi), ops.Cos()(phi)))
    ...:     RX = RX.reshape(3, 3)
    ...:     RZ = ops.Concat(-1)((ops.Cos()(theta), -ops.Sin()(theta), zero,
    ...:                        ops.Sin()(theta), ops.Cos()(theta), zero,
    ...:                        zero, zero, one))
    ...:     RZ = RZ.reshape(3, 3)
    ...:     dot = ops.Einsum('ij,kj->ki')
    ...:     return dot((RZ, dot((RX, dot((RY, v))))))
    ...: 

In [12]: rotation(psi, phi, theta, v)
Out[12]: 
Tensor(shape=[3, 3], dtype=Float32, value=
[[-4.51581448e-01, -7.52180338e-01,  2.84639567e-01],
 [-8.46439958e-01, -2.95659035e-01,  1.81022629e-01],
 [-8.94563913e-01, -2.25287631e-01,  1.71754062e-01]])

从这个计算结果中,我们可以看到跟Jax的案例一样,也是得到了X和Y值分别取负数的结果,程序是正确运行的。但是这里关于案例代码,需要一些额外的解释:

  1. 在上述案例中,我们先定义了一系列的一维Tensor来作为旋转矩阵的元素,使用MindSpore的Concat算子将这些一维Tensor的最后一维取出组成一个新的Tensor,再对其做reshape操作,得到一个我们所需要的旋转矩阵。
  2. 在Jax中我们是使用了vmap将旋转矩阵对单个矢量旋转的操作扩展到对多个矢量的旋转操作,而在MindSpore中虽然也支持了Vmap的算子,但是这里我们使用的是MindSpore所支持的另外一个功能:爱因斯坦求和算子。使用这个算子,我们就允许了旋转矩阵直接对多个矢量输入的指定维度进行运算,一样也可以得到我们想要的计算结果。

总结概要

本文介绍了两个不同的深度学习框架:Jax和MindSpore下的旋转矩阵的实现,对于不同的框架来说同一个功能会涉及到不同的实现方式。在Jax中,由于其函数式编程的特性,就允许我们更加简单的去构造和扩展一个旋转矩阵。MindSpore是一个面向对象编程的框架,其优势在于构建大型的模型应用。但构造一个可用的简单模型,相对而言就会走一些弯路。就比如我们需要使用Concat+Reshape的算子来拼接一个旋转矩阵,看起来会相对麻烦一些。而构建好旋转矩阵之后,则可以使用跟Jax一样的Vmap操作,或者是直接使用爱因斯坦求和来计算旋转矩阵对多个矢量输入的计算,从文章中的案例中可以看到两者所得到的计算结果是一致的。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/mindrot.html

作者ID:DechinPhy

更多原著文章请参考:https://www.cnblogs.com/dechinphy/

打赏专用链接:https://www.cnblogs.com/dechinphy/gallery/image/379634.html

腾讯云专栏同步:https://cloud.tencent.com/developer/column/91958

CSDN同步链接:https://blog.csdn.net/baidu_37157624?spm=1008.2028.3001.5343

51CTO同步链接:https://blog.51cto.com/u_15561675

posted @ 2022-08-22 10:26  DECHIN  阅读(576)  评论(0编辑  收藏  举报