随笔分类 -  深度学习

MindSpore激活函数总结与测试
摘要:这篇文章主要介绍了Softplus、Sigmoid、Softmax和Tanh这4种激活函数,激活函数在机器学习领域中主要起到的是一个决策性质的作用,在分类器中有重要的应用价值。而除了这4种激活函数之外,MindSpore还实现了Softsign的激活函数,但是目前只能在昇腾平台上使用,其他的除了Softplus只能在GPU和昇腾平台运行之外,都是全平台支持的(CPU、GPU、昇腾)。
821
0
1
MindSpore模型验证
摘要:在这篇文章中,我们接着前面的博客继续讲MindSpore在训练好机器学习的模型并且保存成文件之后,如何加载并使用测试集加以验证。从测试结果中我们得到的启发是,机器学习的模型的有效性会很大程度上收到训练集的影响,因此最好是能够保障训练集的广泛性。如果测试集的范围大大超出了训练集所能够表示的范围,那么训练的结果误差就会很大。
517
0
0
MindSpore保存与加载模型
摘要:本文主要从工程实现的角度测试了一下MindSpore的机器学习模型保存与加载的功能,通过这个功能,我们可以将自己训练好的机器学习模型发布出去供更多的人使用,我们也可以直接使用别人在更好的硬件体系上训练好的模型,或者应用于迁移学习。
803
0
0
使用MindSpore的线性神经网络拟合非线性函数
摘要:基于前面所介绍的MindSpore框架使用线性神经网络来拟合线性函数的一个方案,这里我们将其推广到多参数、多幂次的函数,甚至是一些初等的函数。但是对于更加复杂的嵌套函数,可能还要思考一下更加普适的解决方案。
799
0
0
基于Docker安装的MindSpore-1.2 GPU版本
摘要:继上一篇文章介绍了MindSpore的CPU版本的Docker容器化部署之后,MindSpore官方团队推出了MindSpore的GPU版本的Docker容器化部署方案,本文针对这一方案进行了安装测试,并且对于其中一些安装的时候可以遇到的问题的细节进行了处理。之所以采用容器化的解决方案,主要是为了做到SDK环境与编程环境的隔离,释放本地环境配置与部署的压力。当然,也使得本地的开发环境更加的“干净”。
778
0
0
MindSpore函数拟合
摘要:很多机器学习的算法的基础就是函数的拟合,这里我们考虑的是其中一种最简单也最常见的场景:线性函数的拟合,并且我们要通过mindspore来实现这个数据的训练。通过构造均方误差函数,配合前向传播网络与反向传播网络的使用,最终大体成功的拟合了给定的一个线性函数。文末我们还顺带介绍了使用matplotlib的animation来生成动态图的功能,可视化的展现了整个训练的过程。
1412
0
0
基于Docker的MindSpore安装与使用基础介绍
摘要:本文主要讲解了由华为主导的MindSpore开源AI训练框架的基本特性与容器化的安装方案,顺带也介绍了一下Docker的基本使用方法,最后用两个测试案例:Tensor的基本运算、自动微分计算来验证了MindSpore的基本特性。
1991
0
0
点击右上角即可分享
微信分享提示
深色
回顶
收起

喜欢请打赏

扫描二维码打赏

了解更多