1401D - Maximum Distributed Tree
#include <iostream> #include <vector> #include <algorithm> #include <string> #include <set> #include <queue> #include <map> #include <sstream> #include <cstdio> #include <cstring> #include <numeric> #include <cmath> #include <iomanip> #include <deque> #include <bitset> #include <cassert> //#include <unordered_set> //#include <unordered_map> #define ll long long #define pii pair<int, int> #define rep(i,a,b) for(int i=a;i<=b;i++) #define dec(i,a,b) for(int i=a;i>=b;i--) #define forn(i, n) for(int i = 0; i < int(n); i++) using namespace std; int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } }; const long long INF = 0x7f7f7f7f7f7f7f7f; const int inf = 0x3f3f3f3f; const double pi = acos(-1.0); const double eps = 1e-6; const ll mod = 1e9 + 7; inline ll read() { ll x = 0; bool f = true; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); } while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar(); return f ? x : -x; } inline ll gcd(ll m, ll n) { return n == 0 ? m : gcd(n, m % n); } void exgcd(ll A, ll B, ll& x, ll& y) { if (B) exgcd(B, A % B, y, x), y -= A / B * x; else x = 1, y = 0; } inline int qpow(int x, ll n) { int r = 1; while (n > 0) { if (n & 1) r = 1ll * r * x % mod; n >>= 1; x = 1ll * x * x % mod; } return r; } inline int inv(int x) { return qpow(x, mod - 2); } ll lcm(ll a, ll b) { return a * b / gcd(a, b); } /**********************************************************/ const int N = 1e5 + 5; int n; vector<vector<int>> g; ll sz[N]; ll p[N]; int dfs(int cur, int fa) { sz[cur] = 1; for (auto x : g[cur]) { if (x != fa) { sz[cur] += dfs(x, cur); } } return sz[cur]; } bool cmp(pair<ll,ll> a, pair<ll,ll> b) { return a.first * a.second < b.first * b.second; } int main() { #ifdef _DEBUG freopen("input.txt", "r", stdin); //freopen("output.txt", "w", stdout); #endif int T; cin >> T; while (T--) { int n; cin >> n; g = vector<vector<int>>(n + 1); vector<pair<ll,ll>> v(n); rep(i, 1, n - 1) { int u, v; cin >> u >> v; g[u].push_back(v); g[v].push_back(u); } int m; cin >> m; rep(i, 1, m) cin >> p[i]; sort(p + 1, p + m + 1); dfs(1, -1); int tot = 0; rep(i, 2, n) { v[++tot] = { sz[i],n - sz[i] }; } sort(v.begin() + 1, v.end(), cmp); ll ans = 0; if (n - 1 >= m) { int d = n - 1 - m; rep(i, 1, d) { ans += v[i].first * v[i].second%mod; } rep(i, 1, m) { ans += (v[i + d].first * v[i + d].second % mod) * p[i] % mod; } } else { ll tmp = 1; rep(i, n-1, m) tmp *= p[i], tmp%= mod; ans += tmp * (v[n-1].first * v[n-1].second % mod) % mod; rep(i, 1, n-2) { ans += (v[i].first * v[i].second % mod) * p[i] % mod; } } cout << ans%mod << endl; } return 0; }
1401D - Maximum Distributed Tree |