k-Tree DP计数
对dp数情况的问题还是不太懂
#include <iostream> #include <vector> #include <algorithm> #include <string> #include <set> #include <queue> #include <map> #include <sstream> #include <cstdio> #include <cstring> #include <numeric> #include <cmath> #include <iomanip> #include <deque> #include <bitset> #include <cassert> //#include <unordered_set> //#include <unordered_map> #define ll long long #define pii pair<int, int> #define rep(i,a,b) for(ll i=a;i<=b;i++) #define dec(i,a,b) for(ll i=a;i>=b;i--) #define forn(i, n) for(ll i = 0; i < int(n); i++) using namespace std; int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } }; const long long INF = 0x7f7f7f7f7f7f7f7f; const int inf = 0x3f3f3f3f; const double pi = acos(-1.0); const double eps = 1e-6; const int mod = 1e9 + 7; inline ll read() { ll x = 0; bool f = true; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); } while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar(); return f ? x : -x; } inline ll gcd(ll m, ll n) { return n == 0 ? m : gcd(n, m % n); } void exgcd(ll A, ll B, ll& x, ll& y) { if (B) exgcd(B, A % B, y, x), y -= A / B * x; else x = 1, y = 0; } inline int qpow(int x, ll n) { int r = 1; while (n > 0) { if (n & 1) r = 1ll * r * x % mod; n >>= 1; x = 1ll * x * x % mod; } return r; } /**********************************************************/ const int N = 100 + 5; ll dp[N][2]; int main() { cin.tie(0);cout.tie(0); ll n, k, d; cin >> n >> k >> d; memset(dp, 0, sizeof(dp)); dp[0][0] = 1; rep(i, 1, n) { rep(j, 1, k) { if (i - j < 0) break; if (j < d) { dp[i][0] = (dp[i][0] + dp[i - j][0]) % mod; dp[i][1] = (dp[i][1] + dp[i - j][1]) % mod; } else { dp[i][1] = (dp[i][1] + dp[i - j][0]) % mod; dp[i][1] = (dp[i][1] + dp[i - j][1]) % mod; } } } cout << dp[n][1] << endl; }