E - Knapsack 2

Problem Statement

There are NN items, numbered 1,2,,N1,2,…,N. For each ii (1iN1≤i≤N), Item ii has a weight of wiwi and a value of vivi.

Taro has decided to choose some of the NN items and carry them home in a knapsack. The capacity of the knapsack is WW, which means that the sum of the weights of items taken must be at most WW.

Find the maximum possible sum of the values of items that Taro takes home.

Constraints

  • All values in input are integers.
  • 1N1001≤N≤100
  • 1W1091≤W≤109
  • 1wiW1≤wi≤W
  • 1vi1031≤vi≤103

Input

Input is given from Standard Input in the following format:

NN WW
w1w1 v1v1
w2w2 v2v2
::
wNwN vNvN

Output

Print the maximum possible sum of the values of items that Taro takes home.


Sample Input 1 Copy

Copy
3 8
3 30
4 50
5 60

Sample Output 1 Copy

Copy
90

Items 11 and 33 should be taken. Then, the sum of the weights is 3+5=83+5=8, and the sum of the values is 30+60=9030+60=90.


Sample Input 2 Copy

Copy
1 1000000000
1000000000 10

Sample Output 2 Copy

Copy
10

Sample Input 3 Copy

Copy
6 15
6 5
5 6
6 4
6 6
3 5
7 2

Sample Output 3 Copy

Copy
17

Items 2,42,4 and 55 should be taken. Then, the sum of the weights is 5+6+3=145+6+3=14, and the sum of the values is 6+6+5=176+6+5=17.

#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <set>
#include <queue>
#include <map>
#include <sstream>
#include <cstdio>
#include <cstring>
#include <numeric>
#include <cmath>
#include <iomanip>
#include <deque>
#include <bitset>
#include <unordered_set>
#include <unordered_map>
#define ll              long long
#define PII             pair<int, int>
#define rep(i,a,b)      for(int  i=a;i<=b;i++)
#define dec(i,a,b)      for(int  i=a;i>=b;i--)
using namespace std;
int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } };
const long long INF = 0x7f7f7f7f7f7f7f7f;
const int inf = 0x3f3f3f3f;
const double pi = 3.14159265358979323846;
const double eps = 1e-6;
const int mod =1e9+7;
const int N = 1e5+5;
//if(x<0 || x>=r || y<0 || y>=c)

inline ll read()
{
    ll x = 0; bool f = true; char c = getchar();
    while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
    while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
    return f ? x : -x;
}
ll gcd(ll m, ll n)
{
    return n == 0 ? m : gcd(n, m % n);
}
ll lcm(ll m, ll n)
{
    return m * n / gcd(m, n);
}
bool prime(int x) {
    if (x < 2) return false;
    for (int i = 2; i * i <= x; ++i) {
        if (x % i == 0) return false;
    }
    return true;
}
ll qpow(ll m, ll k, ll mod)
{
    ll res = 1, t = m;
    while (k)
    {
        if (k & 1)
            res = res * t % mod;
        t = t * t % mod;
        k >>= 1;
    }
    return res;
}      

int main()
{
    ll n,w;
    cin >> n >> w;
    vector<pair<ll, ll>> a(n + 1);
    vector<vector<ll>> dp(n + 1,vector<ll>(N));
    rep(i, 1, n)
    {
        cin >> a[i].first>>a[i].second;
    }
    rep(i, 1, 1e5)
    {
        dp[0][i] = inf;
    }
    rep(i, 1, n)
    {
        rep(j, 1, 1e5)
        {
            if ( j >=a[i].second)
                dp[i][j] = min(dp[i - 1][j],dp[i - 1][j-a[i].second] + a[i].first);
            else
                dp[i][j] = dp[i - 1][j];
        }
    }
    ll res = 0;
    dec(i,1e5,0)
    {
        if (dp[n][i] <= w)
        {
            res = i;
            break;
        }
    }
    cout << res << endl;
    return 0;
}

 

posted @ 2020-06-16 11:15  DeaL57  阅读(248)  评论(0编辑  收藏  举报