A - Frog 1
Problem Statement
There are NN stones, numbered 1,2,…,N1,2,…,N. For each ii (1≤i≤N1≤i≤N), the height of Stone ii is hihi.
There is a frog who is initially on Stone 11. He will repeat the following action some number of times to reach Stone NN:
- If the frog is currently on Stone ii, jump to Stone i+1i+1 or Stone i+2i+2. Here, a cost of |hi−hj||hi−hj| is incurred, where jj is the stone to land on.
Find the minimum possible total cost incurred before the frog reaches Stone NN.
Constraints
- All values in input are integers.
- 2≤N≤1052≤N≤105
- 1≤hi≤1041≤hi≤104
Input
Input is given from Standard Input in the following format:
NN h1h1 h2h2 …… hNhN
Output
Print the minimum possible total cost incurred.
Sample Input 1 Copy
Copy
4 10 30 40 20
Sample Output 1 Copy
Copy
30
If we follow the path 11 → 22 → 44, the total cost incurred would be |10−30|+|30−20|=30|10−30|+|30−20|=30.
Sample Input 2 Copy
Copy
2 10 10
Sample Output 2 Copy
Copy
0
If we follow the path 11 → 22, the total cost incurred would be |10−10|=0|10−10|=0.
Sample Input 3 Copy
Copy
6 30 10 60 10 60 50
Sample Output 3 Copy
Copy
40
If we follow the path 11 → 33 → 55 → 66, the total cost incurred would be |30−60|+|60−60|+|60−50|=40|30−60|+|60−60|+|60−50|=40.
#include <iostream> #include <vector> #include <algorithm> #include <string> #include <set> #include <queue> #include <map> #include <sstream> #include <cstdio> #include <cstring> #include <numeric> #include <cmath> #include <iomanip> #include <deque> #include <bitset> #include <unordered_set> #include <unordered_map> #define ll long long #define PII pair<int, int> #define rep(i,a,b) for(int i=a;i<=b;i++) #define dec(i,a,b) for(int i=a;i>=b;i--) using namespace std; int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } }; const long long INF = 0x7f7f7f7f7f7f7f7f; const int inf = 0x3f3f3f3f; const double pi = 3.14159265358979323846; const double eps = 1e-6; const int mod =1e9+7; const int N = 1e5+5; //if(x<0 || x>=r || y<0 || y>=c) inline ll read() { ll x = 0; bool f = true; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); } while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar(); return f ? x : -x; } ll gcd(ll m, ll n) { return n == 0 ? m : gcd(n, m % n); } ll lcm(ll m, ll n) { return m * n / gcd(m, n); } bool prime(int x) { if (x < 2) return false; for (int i = 2; i * i <= x; ++i) { if (x % i == 0) return false; } return true; } ll qpow(ll m, ll k, ll mod) { ll res = 1, t = m; while (k) { if (k & 1) res = res * t % mod; t = t * t % mod; k >>= 1; } return res; } int main() { int n; cin >> n; vector<int> a(n + 1); rep(i, 1, n) cin >> a[i]; vector<int> dp(n + 1,0); a[0] = a[1]; rep(i, 2, n) { dp[i] = min(dp[i-1]+abs(a[i] - a[i - 1]),dp[i-2] + abs(a[i] - a[i - 2])); } cout << dp[n] << endl; return 0; }