盘点一个Pandas数据清洗题目

大家好,我是皮皮。

一、前言

前几天在Python白银交流群有个叫【冻豺】的粉丝问了一道Python清洗数据的问题,这里拿出来给大家分享下,一起学习下。

如何才能把pandas serise里乱七八糟的字符清理干净呢?

二、解决过程

【dcpeng】解答

这里给出了一个示例的代码,使用了applylambda和正则表达式,一气呵成,只需要稍微修改下,匹配自己的数据就可以了。

df['主营业务']=df['主营业务'].astype('str').apply(lambda x: re.sub('[0-9+,,.。…、“”^_?::’‘''""()();;【】!!*?]+', '', x))

不过这个是通用的,也会把数字干掉,如果想适配自己的数据,还需要稍微修改下。

这样问题就完美解决了,另外的话,遇到特殊字符什么的,都可以优先使用re.sub或者replace()函数,事半功倍。

三、总结

大家好,我是皮皮。这篇文章主要分享了一个Pandas数据清洗题目,针对该问题给出了具体的解析和代码演示,一共两个方法,帮助粉丝顺利解决了问题。相信肯定还有其他方法的,欢迎大家积极尝试,如果有好方法,记得也分享给我噢,我帮助分享到群里,大家一起学习交流!

最后感谢【冻豺】提问,感谢【dcpeng】和【月神】大佬给出的具体解析和代码演示,感谢【冯诚】等人参与学习交流。

小伙伴们,快快用实践一下吧!如果在学习过程中,有遇到任何问题,欢迎加我好友,我拉你进Python学习交流群共同探讨学习。

posted @   dcpeng  阅读(43)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
历史上的今天:
2020-06-08 浅谈Python内置对象类型——数字篇(附py2和py3的区别之一)
2019-06-08 在Scrapy中如何利用Xpath选择器从HTML中提取目标信息(两种方式)
2018-06-08 如何在VMware中创建虚拟机
点击右上角即可分享
微信分享提示