莫比乌斯反演笔记
莫比乌斯反演
话说之前对莫比乌斯感兴趣还是在17年拜年祭的时候……
然而现在看到莫比乌斯反演就心痛QAQ
莫比乌斯反演又称懵逼钨丝繁衍,其实就是两个式子:
设函数$f(n)$,$g(n)$是数论函数,且满足:
$$f(n)=\sum\limits_{d|n}g(d)$$
则有莫比乌斯反演
$$g(n)=\sum\limits_{d|n}μ(d)f(\frac{n}{d})$$
或者若满足:
$$f(n)=\sum\limits_{n|d}g(d)$$
则有:
$$g(n)=\sum\limits_{n|d}μ(\frac{d}{n})f(d)(d\le maxd)$$
其中$μ$为莫比乌斯函数,设$n=p_{1}^{k_{1}}\cdot p_{2}^{k_{2}}\cdot\cdots\cdot p_{m}^{k_{m}}$($p$为质数)
则$μ(n)$定义如下:
$μ(n)=
\begin{cases}
1& n=1 \\
(-1)^{m}& \prod\limits_{i=1}^{m}k_{i}=1 \\
0& otherwise(k_{i}>1)
\end{cases}$
$μ(n)$有一些非常妙的性质,下面举例说明一下:
性质一:$\mu(n)$是积性函数,即对于正整数$n$,$m$,当$n$和$m$互质时,都有$f(nm)=f(n)f(m)$;
证明:省略,可以考虑从因子分解方向证
性质二:
$\sum\limits_{d|n}\mu(d)=
\begin{cases}
1& n=1 \\
0& n\not=1
\end{cases}$
证明:当$n=1$时结论显然
当$n\not=1$时,将$n$分解为$p_{1}^{k_{1}}\cdot p_{2}^{k_{2}}\cdot\cdots\cdot p_{m}^{k_{m}}$
此时只需要考虑次数为1的质因子,易得其中质因数个数为$r$的因子有$C_{m}^{r}$个,那么原式可化为:
$\sum\limits_{d|n}\mu(d)=C_{m}^{0}-C_{m}^{1}+C_{m}^{2}-\cdots+(-1)^{m}C_{m}^{m}=\sum\limits_{i=0}^{m}(-1)^{i}C_{m}^{i}$
根据二项式定理得
$(x+y)^{m}=\sum\limits_{i=0}^{m}C_{m}^{i}x^{i}y^{n-i}$
将$x=-1,y=1$代入得$\sum\limits_{i=0}^{m}(-1)^{i}C_{m}^{i}=0$
证毕.
现在来证明莫比乌斯反演,网上很多证明都很简略,看得我云里雾里的,这里我就写的详细一点。
求证:当$f(n)=\sum\limits_{d|n}g(d)$时,$g(n)=\sum\limits_{d|n}\mu(d)f(\frac{n}{d})$
证明:由$f$,$g$定义可得$\sum\limits_{d|n}\mu(d)f(\frac{n}{d})=\sum\limits_{d|n}\mu(d)\sum\limits_{k|\frac{n}{d}}g(k)$
变式得$\sum\limits_{d|n}\mu(d)\sum\limits_{k|\frac{n}{d}}g(k)=\sum\limits_{k|n}g(k)\sum\limits_{d|\frac{n}{k}}\mu(d)$
又因为当$n>1$时$\sum\limits_{d|n}\mu(d)=0$
所以当且仅当$k=n$时和式的值为$g(n)$,否则为$0$,最终结果也是$g(n)$
证毕.
另一类证明类似,只写结论:
当$f(n)=\sum\limits_{n|d}g(d)$时$g(n)=\sum\limits_{n|d}μ(\frac{d}{n})f(d)$
所以,没有了?
下面我们来看实现和应用。。。这东西看起来就俩式子,但是非常非常有用!
莫比乌斯反演实现与应用
1.线性筛求莫比乌斯函数
我们莫比乌斯函数是积性函数,那么就可以用线性筛来求。
具体实现就是在素数线性筛上加了几句,首先,素数的莫比乌斯函数是$-1$,当一个数的某个质因子指数大于一时就筛成0。注意实现时如果一个数的最小质因子指数大于$1$才会直接被筛为0,否则会用$\mu(x)=-\mu(i)$来完成。每个数被它的最小质因子筛去,所以是线性的。
代码:
1 int miu[100001],pri[100001],tot=0; 2 bool ntp[100001]; 3 void getmiu(){ 4 memset(ntp,0,sizeof(ntp)); 5 memset(miu,0,sizeof(miu)); 6 miu[1]=1; 7 for(int i=2;i<=100000;i++){ 8 if(!ntp[i]){ 9 pri[++tot]=i; 10 miu[i]=-1; 11 } 12 for(int j=1;j<=tot&&pri[j]*i<=100000;j++){ 13 ntp[pri[j]*i]=true; 14 if(i%pri[j]==0){ 15 miu[i*pri[j]]=0; 16 break; 17 } 18 miu[i*pri[j]]=-miu[i]; 19 } 20 } 21 }
2.求解一系列有关gcd(是最小公因数不是……)的问题
例题一:BZOJ2301&&HDU1695(这个要求x,y和y,x不重复的)
题意:$n$次询问,每次求有多少对$(x,y)$满足$a\le x\le b$且$c\le y\le d$且$gcd(x,y)=k$。
$n,a,b,c,d$都是$50000$级别。
容斥一下(不会怎么容斥的请Alt+F4百度一下)每次拆成四个询问,都是形如有多少对$(x,y)$满足$1\le x\le n$且$1\le y\le m$且$gcd(x,y)=k$(默认$n\le m$否则交换)。
这样的询问等价于询问有多少对$(x,y)$满足$1\le x\le \lfloor\frac{n}{k}\rfloor$且$1\le y\le \lfloor\frac{m}{k}\rfloor$且$x,y$互质
直接做?4*50000^3=???
考虑莫比乌斯反演,令$g(i)$等于满足$1\le x\le n$且$1\le y\le m$且$gcd(x,y)=i$的数对$(x,y)$个数,$f(i)$等于满足$1\le x\le n$且$1\le y\le m$且$i|gcd(x,y)$的数对$(x,y)$个数。
易得$f(i)=\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{i}\rfloor$
反演一下得$g(i)=\sum\limits_{i|d}\mu(\frac{d}{i})f(d)=\sum\limits_{i|d}\mu(\frac{d}{i})\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor$
枚举每个$k$的倍数,就可以$O(n)$处理每个询问了。
然而50000^2=???
继续考虑优化
观察式子$\lfloor\frac{n}{d}\rfloor$,可(da)以(dan)证(cai)明(ce)发现它最多只有$O(\sqrt{n})$种取值。
具体证明如下:
考虑$1\le d\le \sqrt{n}$的情况,此时$\lfloor\frac{n}{d}\rfloor$最多只有$\sqrt{n}$种取值;
剩余当$\sqrt{n}\le d\le n$时,有$\lfloor\frac{n}{d}\rfloor<\sqrt{n}$,因此取值也不超过$\sqrt{n}$种;
综上,$\lfloor\frac{n}{d}\rfloor$最多只有$O(\sqrt{n})$种取值。
即$\lfloor\frac{n}{d}\rfloor$取值连续的段最多只有$\sqrt{n}+\sqrt{m}$段。
所以就可以$O(\sqrt{n}+\sqrt{m})$时间内枚举,然后就……做完了?
具体实现就是分块维护一个$\mu$的前缀和。
并且非常好写!
完整代码:
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<cmath> 5 using namespace std; 6 typedef long long ll; 7 int t,a,b,c,d,k,pre[100001],miu[100001],pri[100001],tot=0; 8 bool ntp[100001]; 9 void getmiu(){ 10 memset(ntp,0,sizeof(ntp)); 11 memset(miu,0,sizeof(miu)); 12 miu[1]=1; 13 for(int i=2;i<=100000;i++){ 14 if(!ntp[i]){ 15 pri[++tot]=i; 16 miu[i]=-1; 17 } 18 for(int j=1;j<=tot&&pri[j]*i<=100000;j++){ 19 ntp[pri[j]*i]=true; 20 if(i%pri[j]==0){ 21 miu[i*pri[j]]=0; 22 break; 23 } 24 miu[i*pri[j]]=-miu[i]; 25 } 26 } 27 } 28 ll work(int n,int m){ 29 ll ans=0; 30 int last=0; 31 if(n>m)swap(n,m); 32 for(int i=1;i<=n;i=last+1){ 33 last=min(n/(n/i),m/(m/i)); 34 ans+=(ll)(pre[last]-pre[i-1])*(n/i)*(m/i); 35 } 36 return ans; 37 } 38 int main(){ 39 getmiu(); 40 pre[0]=0; 41 for(int i=1;i<=100000;i++)pre[i]=pre[i-1]+miu[i]; 42 scanf("%d",&t); 43 for(int i=1;i<=t;i++){ 44 scanf("%d%d%d%d%d",&a,&b,&c,&d,&k); 45 a--,c--; 46 if(!k)printf("0\n"); 47 else printf("%lld\n",work(b/k,d/k)-work(a/k,d/k)-work(b/k,c/k)+work(a/k,c/k)); 48 } 49 return 0; 50 }
例题二:BZOJ2820
题目大意:求有多少对$(x,y)$满足$1\le x\le n$且$1\le y\le m$且$gcd(x,y)=$质数
定义$f(i)$,$g(i)$同上,再枚举质数,有
$ans=\sum\limits_{p}^{n}(\sum\limits_{d=1}^{\frac{n}{p}}\mu(d)\lfloor\frac{n}{pd}\rfloor\lfloor\frac{m}{pd}\rfloor)$
直接做?复杂度大概是$O(\frac{n\sqrt{n}}{logn})$,不是很行
变一下式,设$t=pd$,有
$ans=\sum\limits_{t=1}^{n}\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor(\sum\limits_{p|t}\mu(\frac{t}{p}))$
预处理一下$\sum\limits_{p|t}\mu(\frac{t}{p})$,剩下的分块前缀和就和之前一模一样了。
如何预处理?
考虑线性筛,$f[i*prime[j]]$
$prime[j]|i$时显然$f[i]=\mu(i)$
否则考虑$\mu(i*prime[j]/p_{1})$,当$prime[j]=p_{1}$时为$\mu(i)$,否则所有和为$-f[i]$,因此总和即为$\mu(i)-f[i]$。
代码:
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<cmath> 5 using namespace std; 6 typedef long long ll; 7 int t,a,b,pre[10000001],miu[10000001],pri[10000001],f[10000001],tot=0; 8 bool ntp[10000001]; 9 void getmiu(){ 10 memset(ntp,0,sizeof(ntp)); 11 memset(miu,0,sizeof(miu)); 12 miu[1]=1; 13 for(int i=2;i<=10000000;i++){ 14 if(!ntp[i]){ 15 pri[++tot]=i; 16 miu[i]=-1; 17 f[i]=1; 18 } 19 for(int j=1;j<=tot&&pri[j]*i<=10000000;j++){ 20 ntp[pri[j]*i]=true; 21 if(i%pri[j]==0){ 22 miu[i*pri[j]]=0; 23 f[i*pri[j]]=miu[i]; 24 break; 25 } 26 miu[i*pri[j]]=-miu[i]; 27 f[i*pri[j]]=miu[i]-f[i]; 28 } 29 } 30 } 31 ll work(int n,int m){ 32 ll ans=0; 33 int last=0; 34 if(n>m)swap(n,m); 35 for(int i=1;i<=n;i=last+1){ 36 last=min(n/(n/i),m/(m/i)); 37 ans+=(ll)(pre[last]-pre[i-1])*(n/i)*(m/i); 38 } 39 return ans; 40 } 41 int main(){ 42 getmiu(); 43 pre[0]=0; 44 for(int i=1;i<=10000000;i++)pre[i]=pre[i-1]+f[i]; 45 scanf("%d",&t); 46 for(int i=1;i<=t;i++){ 47 scanf("%d%d",&a,&b); 48 printf("%lld\n",work(a,b)); 49 } 50 return 0; 51 }
例题三:GDOI2018Day2T1谈笑风生
题目过于暴力不予显示(顾名思义)
题目大意:n个点m条边的无向图,边权由点权计算,其中可以花费p能量把每条边权减少p,求最少要花费多少能量才能使1~n的最短路小于等于t;
其中边权计算式为$w=\sum\limits_{i=1}^{num[u]}\sum\limits_{j=1}^{num[v]}(i+j)[gcd(i,j)==1]$
待填坑……
3.还有吗?那我就不会了
总结
不存在的
就是背好两个式子吧……
同时推荐一些很好的课件(同时也是我学习的):Orz PoPoQQQ、Sengxian's Blog