安装部署配置Grafana
WHAT:美观、强大的可视化监控指标展示工具
WHY:用来代替prometheus原生UI界面
# 200机器,准备镜像、资源配置清单:
~]# docker pull grafana/grafana:5.4.2
~]# docker images|grep grafana
~]# docker tag 6f18ddf9e552 harbor.od.com/infra/grafana:v5.4.2
~]# docker push harbor.od.com/infra/grafana:v5.4.2
~]# mkdir /data/k8s-yaml/grafana/ /data/nfs-volume/grafana
~]# cd /data/k8s-yaml/grafana/
grafana]# vi rbac.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: grafana
rules:
- apiGroups:
- "*"
resources:
- namespaces
- deployments
- pods
verbs:
- get
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true"
name: grafana
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: grafana
subjects:
- kind: User
name: k8s-node
grafana]# vi dp.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
labels:
app: grafana
name: grafana
name: grafana
namespace: infra
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 7
selector:
matchLabels:
name: grafana
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
type: RollingUpdate
template:
metadata:
labels:
app: grafana
name: grafana
spec:
containers:
- name: grafana
image: harbor.od.com/infra/grafana:v5.4.2
imagePullPolicy: IfNotPresent
ports:
- containerPort: 3000
protocol: TCP
volumeMounts:
- mountPath: /var/lib/grafana
name: data
imagePullSecrets:
- name: harbor
securityContext:
runAsUser: 0
volumes:
- nfs:
server: hdss7-200
path: /data/nfs-volume/grafana
name: data
grafana]# vi svc.yaml
apiVersion: v1
kind: Service
metadata:
name: grafana
namespace: infra
spec:
ports:
- port: 3000
protocol: TCP
targetPort: 3000
selector:
app: grafana
grafana]# vi ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: grafana
namespace: infra
spec:
rules:
- host: grafana.od.com
http:
paths:
- path: /
backend:
serviceName: grafana
servicePort: 3000
# 11机器,解析域名:
~]# vi /var/named/od.com.zone
serial 前滚一位
grafana A 10.4.7.10
~]# systemctl restart named
~]# ping grafana.od.com
# 22机器,应用配置清单:
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/rbac.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/dp.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/svc.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/ingress.yaml
默认账户和密码都是admin
修改密码:admin123
修改配置,修改如下图
装插件
进入容器
# 第一个:kubenetes App
grafana# grafana-cli plugins install grafana-kubernetes-app
# 第二个:Clock Pannel
grafana# grafana-cli plugins install grafana-clock-panel
# 第三个:Pie Chart
grafana# grafana-cli plugins install grafana-piechart-panel
# 第四个:D3Gauge
grafana# grafana-cli plugins install briangann-gauge-panel
# 第五个:Discrete
grafana# grafana-cli plugins install natel-discrete-panel
装完后,可以在200机器查看
# 200机器:
cd /data/nfs-volume/grafana/plugins/
plugins]# ll
删掉让它重启
重启完成后
查看grafana.od.com,刚刚安装的5个插件都在里面了(记得检查是否在里面了)
添加数据源:Add data source
# 填入参数:
URL:http://prometheus.od.com
TLS Client Auth✔ With CA Cert✔
# 填入参数对应的pem参数:
# 200机器拿ca等:
~]# cat /opt/certs/ca.pem
~]# cat /opt/certs/client.pem
~]# cat /opt/certs/client-key.pem
保存
然后我们去配置plugins里面的kubernetes
右侧就多了个按钮,点击进去
# 按参数填入:
Name:myk8s
URL:https://10.4.7.10:7443
Access:Server
TLS Client Auth✔ With CA Cert✔
# 填入参数:
# 200机器拿ca等:
~]# cat /opt/certs/ca.pem
~]# cat /opt/certs/client.pem
~]# cat /opt/certs/client-key.pem
save后再点击右侧框的图标,并点击Name
可能抓取数据的时间会稍微慢些(两分钟左右)
点击右上角的K8s Cluster,选择你要看的东西
由于K8s Container里面数据不全,如下图
我们改下,把Cluster删了
container也删了
deployment也删了
node也删了
把我给你准备的dashboard的json文件import进来
用同样的方法把node、deployment、cluster、container这4个分别import进来
可以都看一下,已经正常了
然后把etcd、generic、traefik也import进来
还有另外一种import的方法(使用官网的):
找一个别人写好的点进去
这个编号可以直接用
如下图,我们装blackbox的编号是9965
把名字和Prometheus修改一下
或者,你也可以用我上传的(我用的是7587)
你可以两个都用,自己做对比,都留着也可以,就是占一些资源
JMX
这个里面还什么都没有
把Dubbo微服务数据弄到Grafana
dubbo-service
# Edit a Daemon Set,添加以下内容,注意给上一行加逗号
"prometheus_io_scrape": "true",
"prometheus_io_port": "12346",
"prometheus_io_path": "/"
# 直接加进去update,会自动对齐,
dubbo-consumer
# Edit a Daemon Set,添加以下内容,注意给上一行加逗号
"prometheus_io_scrape": "true",
"prometheus_io_port": "12346",
"prometheus_io_path": "/"
# 直接加进去update,会自动对齐,
刷新JMX(可能有点慢,我等了1分钟才出来service,我机器不行了)
完成
此时你可以感受到,Grafana明显比K8S自带的UI界面更加人性化
安装部署alertmanager
WHAT: 从 Prometheus server 端接收到 alerts 后,会进行去除重复数据,分组,并路由到对方的接受方式,发出报警。常见的接收方式有:电子邮件,pagerduty 等。
WHY:使得系统的警告随时让我们知道
# 200机器,准备镜像、资源清单:
~]# mkdir /data/k8s-yaml/alertmanager
~]# cd /data/k8s-yaml/alertmanager
alertmanager]# docker pull docker.io/prom/alertmanager:v0.14.0
# 注意,这里你如果不用14版本可能会报错
alertmanager]# docker images|grep alert
alertmanager]# docker tag 23744b2d645c harbor.od.com/infra/alertmanager:v0.14.0
alertmanager]# docker push harbor.od.com/infra/alertmanager:v0.14.0
# 注意下面记得修改成你自己的邮箱等信息,还有中文注释可以删掉
alertmanager]# vi cm.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: alertmanager-config
namespace: infra
data:
config.yml: |-
global:
# 在没有报警的情况下声明为已解决的时间
resolve_timeout: 5m
# 配置邮件发送信息
smtp_smarthost: 'smtp.163.com:25'
smtp_from: 'ben909336740@163.com'
smtp_auth_username: 'ben909336740@163.com'
smtp_auth_password: 'xxxxxx'
smtp_require_tls: false
# 所有报警信息进入后的根路由,用来设置报警的分发策略
route:
# 这里的标签列表是接收到报警信息后的重新分组标签,例如,接收到的报警信息里面有许多具有 cluster=A 和 alertname=LatncyHigh 这样的标签的报警信息将会批量被聚合到一个分组里面
group_by: ['alertname', 'cluster']
# 当一个新的报警分组被创建后,需要等待至少group_wait时间来初始化通知,这种方式可以确保您能有足够的时间为同一分组来获取多个警报,然后一起触发这个报警信息。
group_wait: 30s
# 当第一个报警发送后,等待'group_interval'时间来发送新的一组报警信息。
group_interval: 5m
# 如果一个报警信息已经发送成功了,等待'repeat_interval'时间来重新发送他们
repeat_interval: 5m
# 默认的receiver:如果一个报警没有被一个route匹配,则发送给默认的接收器
receiver: default
receivers:
- name: 'default'
email_configs:
- to: '909336740@qq.com'
send_resolved: true
alertmanager]# vi dp.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: alertmanager
namespace: infra
spec:
replicas: 1
selector:
matchLabels:
app: alertmanager
template:
metadata:
labels:
app: alertmanager
spec:
containers:
- name: alertmanager
image: harbor.od.com/infra/alertmanager:v0.14.0
args:
- "--config.file=/etc/alertmanager/config.yml"
- "--storage.path=/alertmanager"
ports:
- name: alertmanager
containerPort: 9093
volumeMounts:
- name: alertmanager-cm
mountPath: /etc/alertmanager
volumes:
- name: alertmanager-cm
configMap:
name: alertmanager-config
imagePullSecrets:
- name: harbor
alertmanager]# vi svc.yaml
apiVersion: v1
kind: Service
metadata:
name: alertmanager
namespace: infra
spec:
selector:
app: alertmanager
ports:
- port: 80
targetPort: 9093
# 22机器,应用清单:
~]# kubectl apply -f http://k8s-yaml.od.com/alertmanager/cm.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/alertmanager/dp.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/alertmanager/svc.yaml
# 200机器,配置报警规则:
~]# vi /data/nfs-volume/prometheus/etc/rules.yml
groups:
- name: hostStatsAlert
rules:
- alert: hostCpuUsageAlert
expr: sum(avg without (cpu)(irate(node_cpu{mode!='idle'}[5m]))) by (instance) > 0.85
for: 5m
labels:
severity: warning
annotations:
summary: "{{ $labels.instance }} CPU usage above 85% (current value: {{ $value }}%)"
- alert: hostMemUsageAlert
expr: (node_memory_MemTotal - node_memory_MemAvailable)/node_memory_MemTotal > 0.85
for: 5m
labels:
severity: warning
annotations:
summary: "{{ $labels.instance }} MEM usage above 85% (current value: {{ $value }}%)"
- alert: OutOfInodes
expr: node_filesystem_free{fstype="overlay",mountpoint ="/"} / node_filesystem_size{fstype="overlay",mountpoint ="/"} * 100 < 10
for: 5m
labels:
severity: warning
annotations:
summary: "Out of inodes (instance {{ $labels.instance }})"
description: "Disk is almost running out of available inodes (< 10% left) (current value: {{ $value }})"
- alert: OutOfDiskSpace
expr: node_filesystem_free{fstype="overlay",mountpoint ="/rootfs"} / node_filesystem_size{fstype="overlay",mountpoint ="/rootfs"} * 100 < 10
for: 5m
labels:
severity: warning
annotations:
summary: "Out of disk space (instance {{ $labels.instance }})"
description: "Disk is almost full (< 10% left) (current value: {{ $value }})"
- alert: UnusualNetworkThroughputIn
expr: sum by (instance) (irate(node_network_receive_bytes[2m])) / 1024 / 1024 > 100
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual network throughput in (instance {{ $labels.instance }})"
description: "Host network interfaces are probably receiving too much data (> 100 MB/s) (current value: {{ $value }})"
- alert: UnusualNetworkThroughputOut
expr: sum by (instance) (irate(node_network_transmit_bytes[2m])) / 1024 / 1024 > 100
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual network throughput out (instance {{ $labels.instance }})"
description: "Host network interfaces are probably sending too much data (> 100 MB/s) (current value: {{ $value }})"
- alert: UnusualDiskReadRate
expr: sum by (instance) (irate(node_disk_bytes_read[2m])) / 1024 / 1024 > 50
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual disk read rate (instance {{ $labels.instance }})"
description: "Disk is probably reading too much data (> 50 MB/s) (current value: {{ $value }})"
- alert: UnusualDiskWriteRate
expr: sum by (instance) (irate(node_disk_bytes_written[2m])) / 1024 / 1024 > 50
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual disk write rate (instance {{ $labels.instance }})"
description: "Disk is probably writing too much data (> 50 MB/s) (current value: {{ $value }})"
- alert: UnusualDiskReadLatency
expr: rate(node_disk_read_time_ms[1m]) / rate(node_disk_reads_completed[1m]) > 100
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual disk read latency (instance {{ $labels.instance }})"
description: "Disk latency is growing (read operations > 100ms) (current value: {{ $value }})"
- alert: UnusualDiskWriteLatency
expr: rate(node_disk_write_time_ms[1m]) / rate(node_disk_writes_completedl[1m]) > 100
for: 5m
labels:
severity: warning
annotations:
summary: "Unusual disk write latency (instance {{ $labels.instance }})"
description: "Disk latency is growing (write operations > 100ms) (current value: {{ $value }})"
- name: http_status
rules:
- alert: ProbeFailed
expr: probe_success == 0
for: 1m
labels:
severity: error
annotations:
summary: "Probe failed (instance {{ $labels.instance }})"
description: "Probe failed (current value: {{ $value }})"
- alert: StatusCode
expr: probe_http_status_code <= 199 OR probe_http_status_code >= 400
for: 1m
labels:
severity: error
annotations:
summary: "Status Code (instance {{ $labels.instance }})"
description: "HTTP status code is not 200-399 (current value: {{ $value }})"
- alert: SslCertificateWillExpireSoon
expr: probe_ssl_earliest_cert_expiry - time() < 86400 * 30
for: 5m
labels:
severity: warning
annotations:
summary: "SSL certificate will expire soon (instance {{ $labels.instance }})"
description: "SSL certificate expires in 30 days (current value: {{ $value }})"
- alert: SslCertificateHasExpired
expr: probe_ssl_earliest_cert_expiry - time() <= 0
for: 5m
labels:
severity: error
annotations:
summary: "SSL certificate has expired (instance {{ $labels.instance }})"
description: "SSL certificate has expired already (current value: {{ $value }})"
- alert: BlackboxSlowPing
expr: probe_icmp_duration_seconds > 2
for: 5m
labels:
severity: warning
annotations:
summary: "Blackbox slow ping (instance {{ $labels.instance }})"
description: "Blackbox ping took more than 2s (current value: {{ $value }})"
- alert: BlackboxSlowRequests
expr: probe_http_duration_seconds > 2
for: 5m
labels:
severity: warning
annotations:
summary: "Blackbox slow requests (instance {{ $labels.instance }})"
description: "Blackbox request took more than 2s (current value: {{ $value }})"
- alert: PodCpuUsagePercent
expr: sum(sum(label_replace(irate(container_cpu_usage_seconds_total[1m]),"pod","$1","container_label_io_kubernetes_pod_name", "(.*)"))by(pod) / on(pod) group_right kube_pod_container_resource_limits_cpu_cores *100 )by(container,namespace,node,pod,severity) > 80
for: 5m
labels:
severity: warning
annotations:
summary: "Pod cpu usage percent has exceeded 80% (current value: {{ $value }}%)"
# 在最后面添加如下内容
~]# vi /data/nfs-volume/prometheus/etc/prometheus.yml
alerting:
alertmanagers:
- static_configs:
- targets: ["alertmanager"]
rule_files:
- "/data/etc/rules.yml"
rules.yml文件:这个文件就是报警规则
这时候可以重启Prometheus的pod,但生产商因为Prometheus太庞大,删掉容易拖垮集群,所以我们用另外一种方法,平滑加载(Prometheus支持):
# 21机器,因为我们起的Prometheus是在21机器,平滑加载:
~]# ps aux|grep prometheus
~]# kill -SIGHUP 1488
这时候报警规则就都有了
测试alertmanager报警功能
先把对应的两个邮箱的stmp都打开
我们测试一下,把dubbo-service停了,这样consumer就会报错
把service的scale改成0
blackbox.od.com查看,已经failure了
prometheus.od.com.alerts查看,两个变红了(一开始是变黄)
这时候可以在163邮箱看到已发送的报警
QQ邮箱收到报警
完成(service的scale记得改回1)
关于rules.yml:报警不能错报也不能漏报,在实际应用中,我们需要不断的修改rules的规则,以来贴近我们公司的实际需求。
资源不足时,可关闭部分非必要资源
# 22机器,也可以用dashboard操作:
~]# kubectl scale deployment grafana --replicas=0 -n infra
# out : deployment.extensions/grafana scaled
~]# kubectl scale deployment alertmanager --replicas=0 -n infra
# out : deployment.extensions/alertmanager scaled
~]# kubectl scale deployment prometheus --replicas=0 -n infra
# out : deployment.extensions/prometheus scaled
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步