单爆手

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理
  135 随笔 :: 1 文章 :: 18 评论 :: 27万 阅读

安装部署配置Grafana

WHAT:美观、强大的可视化监控指标展示工具

WHY:用来代替prometheus原生UI界面

# 200机器,准备镜像、资源配置清单:
~]# docker pull grafana/grafana:5.4.2
~]# docker images|grep grafana
~]# docker tag 6f18ddf9e552 harbor.od.com/infra/grafana:v5.4.2
~]# docker push harbor.od.com/infra/grafana:v5.4.2
~]# mkdir /data/k8s-yaml/grafana/ /data/nfs-volume/grafana
~]# cd /data/k8s-yaml/grafana/
grafana]# vi rbac.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/cluster-service: "true"
  name: grafana
rules:
- apiGroups:
  - "*"
  resources:
  - namespaces
  - deployments
  - pods
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/cluster-service: "true"
  name: grafana
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: grafana
subjects:
- kind: User
  name: k8s-node

grafana]# vi dp.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    app: grafana
    name: grafana
  name: grafana
  namespace: infra
spec:
  progressDeadlineSeconds: 600
  replicas: 1
  revisionHistoryLimit: 7
  selector:
    matchLabels:
      name: grafana
  strategy:
    rollingUpdate:
      maxSurge: 1
      maxUnavailable: 1
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: grafana
        name: grafana
    spec:
      containers:
      - name: grafana
        image: harbor.od.com/infra/grafana:v5.4.2
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 3000
          protocol: TCP
        volumeMounts:
        - mountPath: /var/lib/grafana
          name: data
      imagePullSecrets:
      - name: harbor
      securityContext:
        runAsUser: 0
      volumes:
      - nfs:
          server: hdss7-200
          path: /data/nfs-volume/grafana
        name: data

grafana]# vi svc.yaml
apiVersion: v1
kind: Service
metadata:
  name: grafana
  namespace: infra
spec:
  ports:
  - port: 3000
    protocol: TCP
    targetPort: 3000
  selector:
    app: grafana

grafana]# vi ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: grafana
  namespace: infra
spec:
  rules:
  - host: grafana.od.com
    http:
      paths:
      - path: /
        backend:
          serviceName: grafana
          servicePort: 3000

1583504719781

# 11机器,解析域名:
~]# vi /var/named/od.com.zone
serial 前滚一位

grafana            A    10.4.7.10
~]# systemctl restart named
~]# ping grafana.od.com

1582705048800

# 22机器,应用配置清单:
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/rbac.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/dp.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/svc.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/grafana/ingress.yaml

1583504865941

grafana.od.com

默认账户和密码都是admin

修改密码:admin123

1583504898029

修改配置,修改如下图

1583505029816

装插件

进入容器

1583505097409

# 第一个:kubenetes App
grafana# grafana-cli plugins install grafana-kubernetes-app
# 第二个:Clock Pannel
grafana# grafana-cli plugins install grafana-clock-panel
# 第三个:Pie Chart
grafana# grafana-cli plugins install grafana-piechart-panel
# 第四个:D3Gauge
grafana# grafana-cli plugins install briangann-gauge-panel
# 第五个:Discrete
grafana# grafana-cli plugins install natel-discrete-panel

1583505305939

装完后,可以在200机器查看

# 200机器:
cd /data/nfs-volume/grafana/plugins/
plugins]# ll

1583505462177

删掉让它重启

1583505490948

重启完成后

查看grafana.od.com,刚刚安装的5个插件都在里面了(记得检查是否在里面了)

1583505547061

添加数据源:Add data source

1583505581557

1583505600031

# 填入参数:
URL:http://prometheus.od.com
TLS Client Auth✔    With CA Cert✔

1583505840252

# 填入参数对应的pem参数:
# 200机器拿ca等:
~]# cat /opt/certs/ca.pem
~]# cat /opt/certs/client.pem
~]# cat /opt/certs/client-key.pem

1583505713033

1583505856093

保存

然后我们去配置plugins里面的kubernetes

1583505923109

1583505938700

右侧就多了个按钮,点击进去

1583505969865

# 按参数填入:
Name:myk8s
URL:https://10.4.7.10:7443
Access:Server
TLS Client Auth✔    With CA Cert✔

1583506058483

# 填入参数:
# 200机器拿ca等:
~]# cat /opt/certs/ca.pem
~]# cat /opt/certs/client.pem
~]# cat /opt/certs/client-key.pem

1583506131529

save后再点击右侧框的图标,并点击Name

1583506163546

可能抓取数据的时间会稍微慢些(两分钟左右)

1583506184293

1583506503213

点击右上角的K8s Cluster,选择你要看的东西

1583506545308

由于K8s Container里面数据不全,如下图

1583506559069

我们改下,把Cluster删了

1583506631392

1583506645982

container也删了

1583506675876

deployment也删了

1583506695618

node也删了

1583506709705

1583506730713

1583506744138

把我给你准备的dashboard的json文件import进来

1583543092886

1583543584476

1583543602130

用同样的方法把node、deployment、cluster、container这4个分别import进来

1583543698727

可以都看一下,已经正常了

然后把etcd、generic、traefik也import进来

1583543809740

1583543831830

还有另外一种import的方法(使用官网的):

grafana官网

找一个别人写好的点进去

1584241883144

这个编号可以直接用

1584241903882

如下图,我们装blackbox的编号是9965

1584242072703

1584242093513

把名字和Prometheus修改一下

1584242164621

或者,你也可以用我上传的(我用的是7587)

1583543931644

你可以两个都用,自己做对比,都留着也可以,就是占一些资源

JMX

1583544009027

这个里面还什么都没有

1583544017606

把Dubbo微服务数据弄到Grafana

dubbo-service

1583544062372

# Edit a Daemon Set,添加以下内容,注意给上一行加逗号
  "prometheus_io_scrape": "true",
  "prometheus_io_port": "12346",
  "prometheus_io_path": "/"
# 直接加进去update,会自动对齐,

1583544144136

dubbo-consumer

1583544157268

# Edit a Daemon Set,添加以下内容,注意给上一行加逗号
  "prometheus_io_scrape": "true",
  "prometheus_io_port": "12346",
  "prometheus_io_path": "/"
# 直接加进去update,会自动对齐,

1583544192459

刷新JMX(可能有点慢,我等了1分钟才出来service,我机器不行了)

1583544446817

完成

此时你可以感受到,Grafana明显比K8S自带的UI界面更加人性化

安装部署alertmanager

WHAT: 从 Prometheus server 端接收到 alerts 后,会进行去除重复数据,分组,并路由到对方的接受方式,发出报警。常见的接收方式有:电子邮件,pagerduty 等。

WHY:使得系统的警告随时让我们知道

# 200机器,准备镜像、资源清单:
~]# mkdir /data/k8s-yaml/alertmanager
~]# cd /data/k8s-yaml/alertmanager
alertmanager]# docker pull docker.io/prom/alertmanager:v0.14.0
# 注意,这里你如果不用14版本可能会报错
alertmanager]# docker images|grep alert
alertmanager]# docker tag 23744b2d645c harbor.od.com/infra/alertmanager:v0.14.0
alertmanager]# docker push harbor.od.com/infra/alertmanager:v0.14.0
# 注意下面记得修改成你自己的邮箱等信息,还有中文注释可以删掉
alertmanager]# vi cm.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: alertmanager-config
  namespace: infra
data:
  config.yml: |-
    global:
      # 在没有报警的情况下声明为已解决的时间
      resolve_timeout: 5m
      # 配置邮件发送信息
      smtp_smarthost: 'smtp.163.com:25'
      smtp_from: 'ben909336740@163.com'
      smtp_auth_username: 'ben909336740@163.com'
      smtp_auth_password: 'xxxxxx'
      smtp_require_tls: false
    # 所有报警信息进入后的根路由,用来设置报警的分发策略
    route:
      # 这里的标签列表是接收到报警信息后的重新分组标签,例如,接收到的报警信息里面有许多具有 cluster=A 和 alertname=LatncyHigh 这样的标签的报警信息将会批量被聚合到一个分组里面
      group_by: ['alertname', 'cluster']
      # 当一个新的报警分组被创建后,需要等待至少group_wait时间来初始化通知,这种方式可以确保您能有足够的时间为同一分组来获取多个警报,然后一起触发这个报警信息。
      group_wait: 30s

      # 当第一个报警发送后,等待'group_interval'时间来发送新的一组报警信息。
      group_interval: 5m

      # 如果一个报警信息已经发送成功了,等待'repeat_interval'时间来重新发送他们
      repeat_interval: 5m

      # 默认的receiver:如果一个报警没有被一个route匹配,则发送给默认的接收器
      receiver: default

    receivers:
    - name: 'default'
      email_configs:
      - to: '909336740@qq.com'
        send_resolved: true

alertmanager]# vi dp.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: alertmanager
  namespace: infra
spec:
  replicas: 1
  selector:
    matchLabels:
      app: alertmanager
  template:
    metadata:
      labels:
        app: alertmanager
    spec:
      containers:
      - name: alertmanager
        image: harbor.od.com/infra/alertmanager:v0.14.0
        args:
          - "--config.file=/etc/alertmanager/config.yml"
          - "--storage.path=/alertmanager"
        ports:
        - name: alertmanager
          containerPort: 9093
        volumeMounts:
        - name: alertmanager-cm
          mountPath: /etc/alertmanager
      volumes:
      - name: alertmanager-cm
        configMap:
          name: alertmanager-config
      imagePullSecrets:
      - name: harbor

alertmanager]# vi svc.yaml
apiVersion: v1
kind: Service
metadata:
  name: alertmanager
  namespace: infra
spec:
  selector: 
    app: alertmanager
  ports:
    - port: 80
      targetPort: 9093

1583547933312

# 22机器,应用清单:
~]# kubectl apply -f http://k8s-yaml.od.com/alertmanager/cm.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/alertmanager/dp.yaml
~]# kubectl apply -f http://k8s-yaml.od.com/alertmanager/svc.yaml

1583545326722

1583545352951

# 200机器,配置报警规则:
~]# vi /data/nfs-volume/prometheus/etc/rules.yml
groups:
- name: hostStatsAlert
  rules:
  - alert: hostCpuUsageAlert
    expr: sum(avg without (cpu)(irate(node_cpu{mode!='idle'}[5m]))) by (instance) > 0.85
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "{{ $labels.instance }} CPU usage above 85% (current value: {{ $value }}%)"
  - alert: hostMemUsageAlert
    expr: (node_memory_MemTotal - node_memory_MemAvailable)/node_memory_MemTotal > 0.85
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "{{ $labels.instance }} MEM usage above 85% (current value: {{ $value }}%)"
  - alert: OutOfInodes
    expr: node_filesystem_free{fstype="overlay",mountpoint ="/"} / node_filesystem_size{fstype="overlay",mountpoint ="/"} * 100 < 10
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Out of inodes (instance {{ $labels.instance }})"
      description: "Disk is almost running out of available inodes (< 10% left) (current value: {{ $value }})"
  - alert: OutOfDiskSpace
    expr: node_filesystem_free{fstype="overlay",mountpoint ="/rootfs"} / node_filesystem_size{fstype="overlay",mountpoint ="/rootfs"} * 100 < 10
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Out of disk space (instance {{ $labels.instance }})"
      description: "Disk is almost full (< 10% left) (current value: {{ $value }})"
  - alert: UnusualNetworkThroughputIn
    expr: sum by (instance) (irate(node_network_receive_bytes[2m])) / 1024 / 1024 > 100
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual network throughput in (instance {{ $labels.instance }})"
      description: "Host network interfaces are probably receiving too much data (> 100 MB/s) (current value: {{ $value }})"
  - alert: UnusualNetworkThroughputOut
    expr: sum by (instance) (irate(node_network_transmit_bytes[2m])) / 1024 / 1024 > 100
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual network throughput out (instance {{ $labels.instance }})"
      description: "Host network interfaces are probably sending too much data (> 100 MB/s) (current value: {{ $value }})"
  - alert: UnusualDiskReadRate
    expr: sum by (instance) (irate(node_disk_bytes_read[2m])) / 1024 / 1024 > 50
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual disk read rate (instance {{ $labels.instance }})"
      description: "Disk is probably reading too much data (> 50 MB/s) (current value: {{ $value }})"
  - alert: UnusualDiskWriteRate
    expr: sum by (instance) (irate(node_disk_bytes_written[2m])) / 1024 / 1024 > 50
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual disk write rate (instance {{ $labels.instance }})"
      description: "Disk is probably writing too much data (> 50 MB/s) (current value: {{ $value }})"
  - alert: UnusualDiskReadLatency
    expr: rate(node_disk_read_time_ms[1m]) / rate(node_disk_reads_completed[1m]) > 100
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual disk read latency (instance {{ $labels.instance }})"
      description: "Disk latency is growing (read operations > 100ms) (current value: {{ $value }})"
  - alert: UnusualDiskWriteLatency
    expr: rate(node_disk_write_time_ms[1m]) / rate(node_disk_writes_completedl[1m]) > 100
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual disk write latency (instance {{ $labels.instance }})"
      description: "Disk latency is growing (write operations > 100ms) (current value: {{ $value }})"
- name: http_status
  rules:
  - alert: ProbeFailed
    expr: probe_success == 0
    for: 1m
    labels:
      severity: error
    annotations:
      summary: "Probe failed (instance {{ $labels.instance }})"
      description: "Probe failed (current value: {{ $value }})"
  - alert: StatusCode
    expr: probe_http_status_code <= 199 OR probe_http_status_code >= 400
    for: 1m
    labels:
      severity: error
    annotations:
      summary: "Status Code (instance {{ $labels.instance }})"
      description: "HTTP status code is not 200-399 (current value: {{ $value }})"
  - alert: SslCertificateWillExpireSoon
    expr: probe_ssl_earliest_cert_expiry - time() < 86400 * 30
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "SSL certificate will expire soon (instance {{ $labels.instance }})"
      description: "SSL certificate expires in 30 days (current value: {{ $value }})"
  - alert: SslCertificateHasExpired
    expr: probe_ssl_earliest_cert_expiry - time()  <= 0
    for: 5m
    labels:
      severity: error
    annotations:
      summary: "SSL certificate has expired (instance {{ $labels.instance }})"
      description: "SSL certificate has expired already (current value: {{ $value }})"
  - alert: BlackboxSlowPing
    expr: probe_icmp_duration_seconds > 2
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Blackbox slow ping (instance {{ $labels.instance }})"
      description: "Blackbox ping took more than 2s (current value: {{ $value }})"
  - alert: BlackboxSlowRequests
    expr: probe_http_duration_seconds > 2 
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Blackbox slow requests (instance {{ $labels.instance }})"
      description: "Blackbox request took more than 2s (current value: {{ $value }})"
  - alert: PodCpuUsagePercent
    expr: sum(sum(label_replace(irate(container_cpu_usage_seconds_total[1m]),"pod","$1","container_label_io_kubernetes_pod_name", "(.*)"))by(pod) / on(pod) group_right kube_pod_container_resource_limits_cpu_cores *100 )by(container,namespace,node,pod,severity) > 80
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Pod cpu usage percent has exceeded 80% (current value: {{ $value }}%)"

# 在最后面添加如下内容
~]# vi /data/nfs-volume/prometheus/etc/prometheus.yml
alerting:
  alertmanagers:
    - static_configs:
        - targets: ["alertmanager"]
rule_files:
 - "/data/etc/rules.yml"

1583545590235

rules.yml文件:这个文件就是报警规则

这时候可以重启Prometheus的pod,但生产商因为Prometheus太庞大,删掉容易拖垮集群,所以我们用另外一种方法,平滑加载(Prometheus支持):

# 21机器,因为我们起的Prometheus是在21机器,平滑加载:
~]# ps aux|grep prometheus
~]# kill -SIGHUP 1488

1583545718137

1583545762475

这时候报警规则就都有了

测试alertmanager报警功能

先把对应的两个邮箱的stmp都打开

1583721318338

1583721408460

我们测试一下,把dubbo-service停了,这样consumer就会报错

把service的scale改成0

1583545840349

blackbox.od.com查看,已经failure了

1583545937643

prometheus.od.com.alerts查看,两个变红了(一开始是变黄)

1583548102650

1583545983131

这时候可以在163邮箱看到已发送的报警

1583721856162

QQ邮箱收到报警

1583721899076

完成(service的scale记得改回1)

关于rules.yml:报警不能错报也不能漏报,在实际应用中,我们需要不断的修改rules的规则,以来贴近我们公司的实际需求。

资源不足时,可关闭部分非必要资源

# 22机器,也可以用dashboard操作:
~]# kubectl scale deployment grafana --replicas=0 -n infra
# out : deployment.extensions/grafana scaled
~]# kubectl scale deployment alertmanager --replicas=0 -n infra
# out : deployment.extensions/alertmanager scaled
~]# kubectl scale deployment prometheus --replicas=0 -n infra
# out : deployment.extensions/prometheus scaled
posted on   单爆手  阅读(163)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示