傻傻de

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

混淆矩阵

混淆矩阵(Confusion Matrix)是评估模型结果的指标,属于模型评估的一部分,混淆矩阵如下图所示。

  • TP(True Positive): 真实为0,预测也为0

  • FN(False Negative): 真实为0,预测为1

  • FP(False Positive): 真实为1,预测为0

  • TN(True Negative): 真实为0,预测也为0

1.准确率 Accuracy

准确率:所有预测正确的样本占所有样本的比例。

\begin{align}\notag accuracy = \frac{TP + TN}{TP + FN + FP + TN} \end{align}

## 2.精确率 Precision 精确率:预测结果为正例的样本中真实为正例的比例。

\begin{align}\notag precision = \frac{TP}{TP + FP} \end{align}

## 3.灵敏度 Sensitivity 灵敏度:即召回率(Recall),真实为正例的样本中预测结果为正例的比例。

\begin{align}\notag accuracy = \frac{TP}{TP + FN} \end{align}

## 4.特异度 Specificity 特异度:真实为假例的样本中预测结果为反例的结果。

\begin{align}\notag accuracy = \frac{TN}{FP + TN} \end{align}

## 5.F1-score F1-score同时兼顾了分类模型的准确率和召回率,可以看作是模型准确率和召回率的一种加权平均。 F1-score的最大值是1,最小值是0。1代表模型输出结果好,0代表模型输出结果查。

\begin{align}\notag F1 = \frac{2\cdot precision\cdot recall}{precision + recall} \end{align}

sklearn分类模型评估API

	sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None)

y_true:真实目标值
y_pred:预测目标值
labels:包含在报告中的可选标签索引列表
target_names:与标签匹配的可选显示名称(相同顺序)
return:每个分类的精确度,召回率,F1-score的文本摘要


你总是这样轻言放弃的话,无论多久都只会原地踏步。 ——《哆啦A梦》

posted on 2018-12-22 12:02  傻傻de  阅读(7348)  评论(0编辑  收藏  举报