Database Buffer Cache(1)

Database Buffer Cache

Thedatabase buffer cache, also called the buffer cache, is the memory area that stores copies of data blocks read from data files. A buffer is a main memory address in which the buffer manager temporarily caches a currently or recently used data block. All users concurrently connected to a database instance share access to the buffer cache.

Oracle Database uses the buffer cache to achieve the following goals:

  • Optimize physical I/O

    The database updates data blocks in the cache and stores metadata about the changes in the redo log buffer. After a COMMIT, the database writes the redo buffers to disk but does not immediately write data blocks to disk. Instead, database writer (DBW) performs lazy writes in the background.

  • Keep frequently accessed blocks in the buffer cache and write infrequently accessed blocks to disk

    When Database Smart Flash Cache (flash cache) is enabled, part of the buffer cache can reside in the flash cache. This buffer cache extension is stored on a flash disk device, which is a solid state storage device that uses flash memory. The database can improve performance by caching buffers in flash memory instead of reading from magnetic disk.

    Note:

    Database Smart Flash Cache is available only in Solaris and Oracle Enterprise Linux.

Buffer States

The database uses internal algorithms to manage buffers in the cache. A buffer can be in any of the following mutually exclusive states:

  • Unused

    The buffer is available for use because it has never been used or is currently unused. This type of buffer is the easiest for the database to use.

  • Clean

    This buffer was used earlier and now contains a read-consistent version of a block as of a point in time. The block contains data but is "clean" so it does not need to be checkpointed. The database can pin the block and reuse it.

  • Dirty

    The buffer contain modified data that has not yet been written to disk. The database must checkpoint the block before reusing it.

Every buffer has an access mode: pinned or free (unpinned). A buffer is "pinned" in the cache so that it does not age out of memory while a user session accesses it. Multiple sessions cannot modify a pinned buffer at the same time.

The database uses a sophisticated algorithm to make buffer access efficient. Pointers to dirty and nondirty buffers exist on the same least recently used (LRU) list, which has a hot end and cold end. A cold buffer is one that has not been recently used. A hot buffer is frequently accessed and has been recently used.

Note:

Conceptually, there is only one LRU, but for concurrency the database actually uses several LRUs.

Buffer Modes

When a client requests data, Oracle Database retrieves buffers from the database buffer cache in either of the following modes:

  • Current mode

    current mode get, also called a db block get, is a retrieval of a block as it currently appears in the buffer cache. For example, if an uncommitted transaction has updated two rows in a block, then a current mode get retrieves the block with these uncommitted rows. The database uses db block gets most frequently during modification statements, which must update only the current version of the block.

  • Consistent mode

    consistent read get is a retrieval of a read-consistent version of a block. This retrieval may use undo data. For example, if an uncommitted transaction has updated two rows in a block, and if a query in a separate session requests the block, then the database uses undo data to create a read-consistent version of this block (called a consistent read clone) that does not include the uncommitted updates. Typically, a query retrieves blocks in consistent mode.

See Also:

Buffer I/O

logical I/O, also known as a buffer I/O, refers to reads and writes of buffers in the buffer cache. When a requested buffer is not found in memory, the database performs a physical I/O to copy the buffer from either the flash cache or disk into memory, and then a logical I/O to read the cached buffer.

Buffer Writes

The database writer (DBW) process periodically writes cold, dirty buffers to disk. DBWn writes buffers in the following circumstances:

  • A server process cannot find clean buffers for reading new blocks into the database buffer cache.

    As buffers are dirtied, the number of free buffers decreases. If the number drops below an internal threshold, and if clean buffers are required, then server processes signal DBWn to write.

    The database uses the LRU to determine which dirty buffers to write. When dirty buffers reach the cold end of the LRU, the database moves them off the LRU to a write queue. DBWn writes buffers in the queue to disk, using multiblock writes if possible. This mechanism prevents the end of the LRU from becoming clogged with dirty buffers and allows clean buffers to be found for reuse.

  • The database must advance the checkpoint, which is the position in the redo thread from which instance recovery must begin.

  • Tablespaces are changed to read-only status or taken offline.

See Also:

Buffer Reads

When the number of clean or unused buffers is low, the database must remove buffers from the buffer cache. The algorithm depends on whether the flash cache is enabled:

  • Flash cache disabled

    The database re-uses each clean buffer as needed, overwriting it. If the overwritten buffer is needed later, then the database must read it from magnetic disk.

  • Flash cache enabled

    DBWn can write the body of a clean buffer to the flash cache, enabling reuse of its in-memory buffer. The database keeps the buffer header in an LRU list in main memory to track the state and location of the buffer body in the flash cache. If this buffer is needed later, then the database can read it from the flash cache instead of from magnetic disk.

When a client process requests a buffer, the server process searches the buffer cache for the buffer. A cache hit occurs if the database finds the buffer in memory. The search order is as follows:

  1. The server process searches for the whole buffer in the buffer cache.

    If the process finds the whole buffer, then the database performs a logical read of this buffer.

  2. The server process searches for the buffer header in the flash cache LRU list.

    If the process finds the buffer header, then the database performs an optimized physical read of the buffer body from the flash cache into the in-memory cache.

  3. If the process does not find the buffer in memory (a cache miss), then the server process performs the following steps:

    1. Copies the block from a data file into memory (a physical read)

    2. Performs a logical read of the buffer that was read into memory

Figure 14-6 illustrates the buffer search order. The extended buffer cache includes both the in-memory buffer cache, which contains whole buffers, and the flash cache, which contains buffer bodies. In the figure, the database searches for a buffer in the buffer cache and, not finding the buffer, reads it into memory from magnetic disk.

In general, accessing data through a cache hit is faster than through a cache miss. The buffer cache hit ratio measures how often the database found a requested block in the buffer cache without needing to read it from disk.

The database can perform physical reads from either a data file or a temp file. Reads from a data file are followed by logical I/Os. Reads from a temp file occur when insufficient memory forces the database write data to a temporary table and read it back later. These physical reads bypass the buffer cache and do not incur a logical I/O.

See Also:

Oracle Database Performance Tuning Guide to learn how to calculate the buffer cache hit ratio
Buffer Touch Counts

The database measures the frequency of access of buffers on the LRU list using a touch count. This mechanism enables the database to increment a counter when a buffer is pinned instead of constantly shuffling buffers on the LRU list.

Note:

The database does not physically move blocks in memory. The movement is the change in location of a pointer on a list.

When a buffer is pinned, the database determines when its touch count was last incremented. If the count was incremented over three seconds ago, then the count is incremented; otherwise, the count stays the same. The three-second rule prevents a burst of pins on a buffer counting as many touches. For example, a session may insert several rows in a data block, but the database considers these inserts as one touch.

If a buffer is on the cold end of the LRU, but its touch count is high, then the buffer moves to the hot end. If the touch count is low, then the buffer ages out of the cache.

Buffers and Full Table Scans

When buffers must be read from disk, the database inserts the buffers into the middle of the LRU list. In this way, hot blocks can remain in the cache so that they do not need to be read from disk again.

A problem is posed by a full table scan, which sequentially reads all rows under the table high water mark (see "Segment Space and the High Water Mark"). Suppose that the total size of the blocks in a table segment is greater than the size of the buffer cache. A full scan of this table could clean out the buffer cache, preventing the database from maintaining a cache of frequently accessed blocks.

Blocks read into the database cache as the result of a full scan of a large table are treated differently from other types of reads. The blocks are immediately available for reuse to prevent the scan from effectively cleaning out the buffer cache.

In the rare case where the default behavior is not desired, you can change the CACHE attribute of the table. In this case, the database does not force or pin the blocks in the buffer cache, but ages them out of the cache in the same way as any other block. Use care when exercising this option because a full scan of a large table may clean most of the other blocks out of the cache.

See Also:

Buffer Pools

buffer pool is a collection of buffers. The database buffer cache is divided into one or more buffer pools.

You can manually configure separate buffer pools that either keep data in the buffer cache or make the buffers available for new data immediately after using the data blocks. You can then assign specific schema objects to the appropriate buffer pool to control how blocks age out of the cache.

The possible buffer pools are as follows:

  • Default pool

    This pool is the location where blocks are normally cached. Unless you manually configure separate pools, the default pool is the only buffer pool.

  • Keep pool

    This pool is intended for blocks that were accessed frequently, but which aged out of the default pool because of lack of space. The goal of the keep buffer pool is to retain objects in memory, thus avoiding I/O operations.

  • Recycle pool

    This pool is intended for blocks that are used infrequently. A recycle pool prevent objects from consuming unnecessary space in the cache.

A database has a standard block size (see "Database Block Size"). You can create a tablespace with a block size that differs from the standard size. Each nondefault block size has its own pool. Oracle Database manages the blocks in these pools in the same way as in the default pool.

Figure 14-7 shows the structure of the buffer cache when multiple pools are used. The cache contains default, keep, and recycle pools. The default block size is 8 KB. The cache contains separate pools for tablespaces that use the nonstandard block sizes of 2 KB, 4 KB, and 16 KB.

Figure 14-7 Database Buffer Cache

Description of Figure 14-7 follows
Description of "Figure 14-7 Database Buffer Cache"

See Also:

 

 

 

reference:https://docs.oracle.com/cd/E11882_01/server.112/e40540/memory.htm#CNCPT1225

 

posted @ 2018-04-16 14:18  dayu.liu  阅读(390)  评论(0编辑  收藏  举报