使用python分析微信好友
准备工作:(我使用的是Anoconda)
本次操作所需要的库:
wxpy
pyecharts
wordcloud
numpy
PIL
matplotlib
pandas
首先检查上面的库是否已经安装,代码如下:
如果存在没安装的库会提示:
此时我们需要打开Anaconda Prompt,输入pip install '需要安装的库'即可,效果如下
好了,安装完所有的库之后,我们就可以开工了
代码分解:
1.获取好友信息
def get_friends_info(self): #获取好像信息,返回lis列表 bot = Bot() lis = [['昵称', '备注名称', '性别', '城市', '省份', '个人签名']] # 把信息存储为一个二维列表,添加头部信息 friend_all = bot.friends() for a_friend in friend_all: NickName = a_friend.raw.get('NickName', None) #获取所有好友信息 raw表示获取全部信息 RemarkName = a_friend.raw.get('RemarkName', None) Sex = {1: "男", 2: "女", 0: "未知"}.get(a_friend.raw.get('Sex', None), None) City = a_friend.raw.get('City', None) Province = a_friend.raw.get('Province', None) Signature = a_friend.raw.get('Signature', None) #HeadImgUrl = a_friend.raw.get('HeadImgUrl', None) #HeadImgFlag = a_friend.raw.get('HeadImgFlag', None) list_0 = [NickName, RemarkName, Sex, City, Province, Signature] lis.append(list_0) return lis
2.将好友信息输入excel表格
def friends_info_lis_to_excle(self): import openpyxl<br> lis = self.get_friends_info()<br> wb = openpyxl.Workbook() sheet = wb.active sheet.title = self.sheetname for i in range(0, len(lis)): for j in range(0, len(lis[i])): sheet.cell(row=i+1, column=j+1, value=str(lis[i][j])) wb.save(self.filename) print("excel保存成功")
3.创建字典供词云使用
def extract_data_as_two_lis(self, condition): df = read_excel(self.filename, sheet_name=self.sheetname) X_list = df[condition].fillna('未知').tolist() # 把列转换为list,用'未知'替换Nan? counts = {} # 创建字典 for word in X_list: counts[word] = counts.get(word, 0) + 1 # 统计词频 items = list(counts.items()) # 返回所有键值对 items.sort(key=lambda x: x[1], reverse=True) # 降序排序 keylist = list() valueslist = list() for item in items: word, count = item #if word == '0': #word = "未知" keylist.append(word) # 把词语降序word放进一个列表 valueslist.append(count) return keylist, valueslist
4.制作词云
def city_wordcloud(self, save_name, condition): wordlist, giveup = self.extract_data_as_two_lis(condition) new_wordlist = list() for i in range(25): new_wordlist.append(wordlist[i]) wl = ' '.join(wordlist) # 把列表转换成str wl为str类型,所以需要转换 cloud_mask = np.array(Image.open("love.jpg")) # 词云的背景图,需要颜色区分度高 wc = WordCloud( background_color="black", # 背景颜色 mask=cloud_mask, # 背景图cloud_mask max_words=100, # 最大词语数目 font_path='simfang.ttf', # 调用font里的simfang.tff字体 height=500, # 设置高度 width=2600, # 设置宽度 max_font_size=1000, # 最大字体号 random_state=1000, # 设置随机生成状态,即有多少种配色方案 ) myword = wc.generate(wl) # 用 wl的词语 生成词云 # 展示词云图 plt.imshow(myword) plt.axis("off") #plt.show() try: wc.to_file(save_name + '.jpg') # 把词云保存下当前目录(与此py文件目录相同) except: print("词云保存失败")
5.生成html柱状图
def pillar_picture(self, condition, render_name): from pyecharts.charts import Bar from pyecharts.globals import ThemeType from pyecharts import options as opts keylist, valueslist = self.extract_data_as_two_lis(condition) new_keylist = list() new_valueslist = list() for i in range(10): new_keylist.append(keylist[i]) new_valueslist.append(valueslist[i]) bar = Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) # x轴 列表 bar.add_xaxis(new_keylist) bar.add_yaxis("好友分布", new_valueslist) # render 会生成本地 HTML 文件,默认会在当前目录生成 城市分布柱状图.html 文件 # 也可以传入路径参数,如 bar.render("mycharts.html") bar.render(render_name) print("pillar_picture图片保存成功!")
6.生成城市分布图
def map_picture(self, condition, picture_name, keylist, valueslist, Map_condition): from pyecharts import options as opts from pyecharts.charts import Map
def map_visualmap() -> Map: new_keylist = list() new_valueslist = list() if condition == '城市': for i in range(len(keylist)): # 列表处理,默认elsx里面的city没有'市'字,地图需要市字 new_keylist.append(keylist[i] + '市') new_valueslist.append(valueslist[i]) else: for i in range(len(keylist)): new_keylist.append(keylist[i]) new_valueslist.append(valueslist[i]) c = ( Map() .add("好友地图分布", [list(z) for z in zip(new_keylist, new_valueslist)], Map_condition) .set_global_opts( title_opts=opts.TitleOpts(title="Map-VisualMap"), visualmap_opts=opts.VisualMapOpts(max_=100), ) ) try: c.render(picture_name) except: print("html地图图片创建失败") print('html地图图片保存成功') map_visualmap()#调用自己 def find_friends_in_condition(self, condition): df = pd.read_excel(self.filename, usecols=[0, 1, 3], names=None) #不要列名 df_li = df.values.tolist() name = list() for data in df_li: condition = condition if condition in data: name.append(data) self.map_picture() #print(len(name), name) return name
>>>代码执行效果如下:
>>>好友城市分布词云
>>>好友城市分布柱形图
>>>好友城市分布地图
>>>csv文件中的好友数据