JAVA8学习——从源码角度深入Stream流(学习过程)

从源代码深入Stream /

学习的时候,官方文档是最重要的.

及其重要的内容我们不仅要知道stream用,要知道为什么这么用,还要知道底层是怎么去实现的.

--个人注释:从此看出,虽然新的jdk版本对开发人员提供了很大的遍历,但是从底层角度来说,实现确实是非常复杂的.
--对外提供很简单的接口使用. (一定是框架给封装到底层了,所以你才用着简单.)

遇到问题,能够从底层深入解决问题.

学习一门技术的时候,先学会用,然后去挖掘深层次的内容(底层代码和运作方式).

引入:Example.

Copy
public class StudentTest1 { public static void main(String[] args) { Student student1 = new Student("zhangsan", 80); Student student2 = new Student("lisi", 90); Student student3 = new Student("wangwu", 100); Student student4 = new Student("zhaoliu", 90); List<Student> students = Arrays.asList(student1, student2, student3, student4); //collect()方法深入源码详解 //op1:集合转换为stream, 然后stream转换为List List<Student> students1 = students.stream().collect(Collectors.toList()); students1.forEach(System.out::println); System.out.println("----------"); System.out.println("count: "+ students.stream().collect(counting()));//Collectors类提供的counting()方法 System.out.println("count: "+ students.stream().count()); //stream提供的方法 , 底层实现 mapToLong()->sum //当jdk底层提供有通用的方法和具体的实现方法,越具体的越好. } }

静态导入(直接导入指定Java类中实现的方法)

Copy
import static java.util.stream.Collectors.*;
  • collect:收集器
  • Collector是一个接口,是特别重要的接口.

Collector接口源码解读#

题外话:虽然JDK提供了很多Collector的实现,但是很多人仅停留在使用阶段.

我们这次一行一行的读javadoc. 因为真的很重要.

Copy
/** * A <a href="package-summary.html#Reduction">mutable reduction operation</a> that * accumulates input elements into a mutable result container, optionally transforming * the accumulated result into a final representation after all input elements * have been processed. Reduction operations can be performed either sequentially * or in parallel. 一个可变的汇聚操作.将输入元素累积到可变的结果容器当中.它会在所有元素都处理完毕后,将累积之后的结果转换成一个最终的表示(这是一个可选操作).汇聚操作支持串行和并行两种方式执行. --如 ArrayList:就是一个可变的容器. --支持并行操作:确保数据不会错,线程可以并发.很难.另外并不是说并行一定比串行要快,因为并行是有额外开销的. * * <p>Examples of mutable reduction operations include: * accumulating elements into a {@code Collection}; concatenating * strings using a {@code StringBuilder}; computing summary information about * elements such as sum, min, max, or average; computing "pivot table" summaries * such as "maximum valued transaction by seller", etc. The class {@link Collectors} * provides implementations of many common mutable reductions. 可变的reduction(汇聚)操作包括:将元素累积到集合当中,使用StringBuilder将字符串给拼在一起,计算关于元素的sum,min,max or average等,计算数据透视图计算:如根据销售商获取最大销售额等.这个Collectors类,提供了大量的可变汇聚的实现. -- Collectors本身实际上是一个工厂. * * <p>A {@code Collector} is specified by four functions that work together to * accumulate entries into a mutable result container, and optionally perform * a final transform on the result. They are: <ul> * <li>creation of a new result container ({@link #supplier()})</li> * <li>incorporating a new data element into a result container ({@link #accumulator()})</li> * <li>combining two result containers into one ({@link #combiner()})</li> * <li>performing an optional final transform on the container ({@link #finisher()})</li> * </ul> 一个Collector是由4个函数组成的,可以对结果进行一个最终的转化. 4个方法分别是: 1.创建一个新的接结果容器 <supplier()> new 2.将新的数据元素给合并到一个结果容器中.<accumulator()> add 3.将两个结果容器合并成一个.<combiner()> + 4.将中间的累积类型,转换成结果类型. <finisher()> result 每个方法都会返回一个函数式皆苦. --学习的时候,官方文档是最重要的. * * <p>Collectors also have a set of characteristics, such as * {@link Characteristics#CONCURRENT}, that provide hints that can be used by a * reduction implementation to provide better performance. Collectors 还会返回这么一个集合 Characteristics#CONCURRENT. (也就是这个类中的枚举类) * * <p>A sequential implementation of a reduction using a collector would * create a single result container using the supplier function, and invoke the * accumulator function once for each input element. * A parallel implementation * would partition the input, create a result container for each partition, * accumulate the contents of each partition into a subresult for that partition, * and then use the combiner function to merge the subresults into a combined * result. 一个汇聚操作串行的实现,会创建一个唯一的一个结果容器.使用<Supplier>函数. 每一个输入元素都会调用累积函数(accumulator())一次. 一个并行的实现,将会对输入进行分区,分成多个区域,每一次分区都会创建一个结果容器,然后函数.累积每一个结果容器的内容区内形成一个,然后通过comtainer()给合并成一个. -- 解释: combiner函数,假如有4个线程同时去执行,那么就会生成4个部分结果. 结果分别是:1.2.3.4 可能是: 1.2 -> 5 5.3 -> 6 6.4 -> 7 这5.6.7新创建的集合,就叫做 新的结果容器 也可能是: 1.2 -> 1+2 (新的一个) 1.3 -> 1(新的一个) 这种新的折叠后的,叫做折叠成一个参数容器. * * <p>To ensure that sequential and parallel executions produce equivalent * results, the collector functions must satisfy an <em>identity</em> and an * <a href="package-summary.html#Associativity">associativity</a> constraints. 为了确保串行与并行获得等价的结果. collector(收集器)的函数必须满足2个条件. 1. identity: 同一性 2. Associativity :结合性 * * <p>The identity constraint says that for any partially accumulated result, * combining it with an empty result container must produce an equivalent * result. That is, for a partially accumulated result {@code a} that is the * result of any series of accumulator and combiner invocations, {@code a} must * be equivalent to {@code combiner.apply(a, supplier.get())}. 同一性是说:针对于任何部分累积的结果来说,将他与一个空的容器融合,必须会生成一个等价的结果.等价于部分的累积结果. 也就是说对于一个部分的累积结果a,对于任何一条线上的combiner invocations. a == combiner.apply(a, supplier.get()) supplier.get() ,获取一个空的结果容器. 然后将a与空的结果容器容器. 保证a == (融合等式) . 这个特性就是:同一性. --部分累积的结果:是在流程中产生的中间结果. --解释上述等式为什么成立:a是线程某一个分支得到的部分结果. 后面的是调用BiarnyOperator.apply() (List<String> list1,List<String> list2)->{list1.addAll(list2);return list1;} 这个类似于之前说的: 将两个结果集折叠到同一个容器.然后返回来第一个结果的融合. * * <p>The associativity constraint says that splitting the computation must * produce an equivalent result. That is, for any input elements {@code t1} * and {@code t2}, the results {@code r1} and {@code r2} in the computation * below must be equivalent: 结合性是说:分割执行的时候,也必须产生相同的结果.每一份处理完之后,也得到相应的结果. * <pre>{@code * A a1 = supplier.get();//获取结果容器 a1. * accumulator.accept(a1, t1); //a1:每一次累积的中间结果, t1:流中下一个待累积的元素. * accumulator.accept(a1, t2); //t1->a1, a1已经有东西. 然后 t2->t1 = r1 (也就是下一步) * R r1 = finisher.apply(a1); // result without splitting * * A a2 = supplier.get(); //另外一个线程 * accumulator.accept(a2, t1); //两个结果集转换成中间结果. * A a3 = supplier.get(); //第三个线程 * accumulator.accept(a3, t2); //两个中间结果转换成最终结果. * R r2 = finisher.apply(combiner.apply(a2, a3)); // result with splitting * } </pre> 所以要保证:无论是单线程,还是多线程(串行和并行)的结果都要是一样的. 这就是所谓的:结合性. --个人注释:从此看出,虽然新的jdk版本对开发人员提供了很大的遍历,但是从底层角度来说,实现确实是非常复杂的. --对外提供很简单的接口使用. (一定是框架给封装到底层了,所以你才用着简单.) * * <p>For collectors that do not have the {@code UNORDERED} characteristic, * two accumulated results {@code a1} and {@code a2} are equivalent if * {@code finisher.apply(a1).equals(finisher.apply(a2))}. For unordered * collectors, equivalence is relaxed to allow for non-equality related to * differences in order. (For example, an unordered collector that accumulated * elements to a {@code List} would consider two lists equivalent if they * contained the same elements, ignoring order.) 对于一个不包含无序的收集器来说, a1 和 a2是等价的. 条件:finisher.apply(a1).equals(finisher.apply(a2) 对于无序的收集器来说:这种等价性就没有那么严格了,它会考虑到顺序上的区别所对应的不相等性. * * <p>Libraries that implement reduction based on {@code Collector}, such as * {@link Stream#collect(Collector)}, must adhere to the following constraints: 基于Collector 去实现汇聚(reduction)操作的这种库, 必须遵守如下的约定. - 注释:汇聚其实有多种实现. 如Collectors中的reducting(). 如Stream接口中有三种reduce()重载的方法. 这两个有很大的本质的差别: (注意单线程和多线程情况下的影响.) reduce:要求不可变性 Collectors收集器方式:可变的结果容器. * <ul> * <li>The first argument passed to the accumulator function, both * arguments passed to the combiner function, and the argument passed to the * finisher function must be the result of a previous invocation of the * result supplier, accumulator, or combiner functions.</li> 1. 传递给accumulate函数的参数,以及给Combiner的两个参数,以及finisher函数的参数, 他们必须是 这几个supplier, accumulator, or combiner 函数函数上一次调用的结果(泛型-T). * <li>The implementation should not do anything with the result of any of * the result supplier, accumulator, or combiner functions other than to * pass them again to the accumulator, combiner, or finisher functions, * or return them to the caller of the reduction operation.</li> 2. 实现不应该对, 生成的 --- 结果 做任何的事情. 除了将他们再传给下一个函数. (中间不要做任何的操作,否则肯定是紊乱的.) * <li>If a result is passed to the combiner or finisher * function, and the same object is not returned from that function, it is * never used again.</li> 3.如果一个结果被传递给combiner或者finisher函数,相同的对象并没有从函数里面返回, 那么他们再也不会被使用了.(表示已经被用完了.) * <li>Once a result is passed to the combiner or finisher function, it * is never passed to the accumulator function again.</li> 4.一个函数如果被执行给了combiner或者finisher函数之后,它再也不会被accumulate函数调用了. (就是说,如果被结束函数执行完了. 就不会再被中间操作了.) * <li>For non-concurrent collectors, any result returned from the result * supplier, accumulator, or combiner functions must be serially * thread-confined. This enables collection to occur in parallel without * the {@code Collector} needing to implement any additional synchronization. * The reduction implementation must manage that the input is properly * partitioned, that partitions are processed in isolation, and combining * happens only after accumulation is complete.</li> 5. 对于非并发的收集起来说.从supplier, accumulator, or combiner任何的结果返回一定是被限定在当前的线程了. 所以可以被用在并行的操作了. reduction的操作必须被确保被正确的分析了,4个线程,被分为4个区,不会相互干扰,再都执行完毕之后,再讲中间容器进行融合.形成最终结果返回. * <li>For concurrent collectors, an implementation is free to (but not * required to) implement reduction concurrently. A concurrent reduction * is one where the accumulator function is called concurrently from * multiple threads, using the same concurrently-modifiable result container, * rather than keeping the result isolated during accumulation. 6.对于并发的收集器,实现可以自由的选择. 和上面的5相对于. 在累积阶段不需要保持独立性. * A concurrent reduction should only be applied if the collector has the * {@link Characteristics#UNORDERED} characteristics or if the * originating data is unordered.</li> 一个并发的,在这个时候一定会被使用; 无序的. --到此结束,重要的 概念基本上已经介绍完毕了. * </ul> * * <p>In addition to the predefined implementations in {@link Collectors}, the * static factory methods {@link #of(Supplier, BiConsumer, BinaryOperator, Characteristics...)} * can be used to construct collectors. For example, you could create a collector * that accumulates widgets into a {@code TreeSet} with: * * <pre>{@code * Collector<Widget, ?, TreeSet<Widget>> intoSet = * Collector.of(TreeSet::new, TreeSet::add, * (left, right) -> { left.addAll(right); return left; }); * }</pre> 使用.三个参数构造的 of 方法,() 三个参数 1.结果容器 2.将数据元素累积添加到结果容器 3.返回结果容器.(此处使用TreeSet) * * (This behavior is also implemented by the predefined collector.预定义的Collector. * {@link Collectors#toCollection(Supplier)}). * * @apiNote * Performing a reduction operation with a {@code Collector} should produce a * result equivalent to: * <pre>{@code * R container = collector.supplier().get(); * for (T t : data) * collector.accumulator().accept(container, t); * return collector.finisher().apply(container); * }</pre> 上述:汇聚容器的实现过程. 1.创建一个容器 2.累加到容器 3.返回结果容器. * * <p>However, the library is free to partition the input, perform the reduction * on the partitions, and then use the combiner function to combine the partial * results to achieve a parallel reduction. (Depending on the specific reduction * operation, this may perform better or worse, depending on the relative cost * of the accumulator and combiner functions.) 性能的好坏:取决于实际情况. (并行不一定比串行性能高.) * * <p>Collectors are designed to be <em>composed</em>; many of the methods * in {@link Collectors} are functions that take a collector and produce * a new collector. For example, given the following collector that computes * the sum of the salaries of a stream of employees: 收集器本身被设计成可以组合的. 也就是说收集器本身的组合.例如下. * * <pre>{@code * Collector<Employee, ?, Integer> summingSalaries * = Collectors.summingInt(Employee::getSalary)) * }</pre> Collector(),三个参数. * * If we wanted to create a collector to tabulate the sum of salaries by * department, we could reuse the "sum of salaries" logic using * {@link Collectors#groupingBy(Function, Collector)}: 如果想创建一个组合的容器. 就是之前用的groupingBy()的分类函数.如下例子. * * <pre>{@code * Collector<Employee, ?, Map<Department, Integer>> summingSalariesByDept * = Collectors.groupingBy(Employee::getDepartment, summingSalaries); * }</pre> 分组->求和 分组->求和 二级分组. * * @see Stream#collect(Collector) * @see Collectors * * @param <T> the type of input elements to the reduction operation * @param <A> the mutable accumulation type of the reduction operation (often * hidden as an implementation detail) * @param <R> the result type of the reduction operation * @since 1.8 */

理解到这里,受益匪浅.

Collector接口详解#

Collector的三个泛型<T,A,R>详解#

Copy
* @param <T> the type of input elements to the reduction operation * @param <A> the mutable accumulation type of the reduction operation (often * hidden as an implementation detail) * @param <R> the result type of the reduction operatio
  • T:需要被融合操作的输入参数的类型 (也就是流中的每一个元素的类型)
  • A:reduction操作的可变的累积的类型.(累积的集合的类型.)(中间结果容器的类型.)(返回结果容器的类型)
  • R:汇聚操作的结果类型.

supplier()#

Copy
/** * A function that creates and returns a new mutable result container. * 创建一个新的可变结果容器.返回 Supplier函数式接口. * @return a function which returns a new, mutable result container 泛型 - A : 可变容器的类型. */ Supplier<A> supplier();

accumulator()#

Copy
/** * A function that folds a value into a mutable result container. * 将一个新的元素数据元素折叠(累加)到一个结果容器当中. 返回值为 BiConsumer函数式接口 * @return a function which folds a value into a mutable result container 泛型-A:返回的中间容器的类型(结果类型) 泛型-T:流中待处理的下一个元素的类型.(源类型) */ BiConsumer<A, T> accumulator();

combiner()#

Copy
/** 和并行流紧密相关. * A function that accepts two partial results and merges them. The * combiner function may fold state from one argument into the other and * return that, or may return a new result container. * 接收两个部分结果,然后给合并起来.将结果状态从一个参数转换成另一个参数,或者返回一个新的结果容器....*(有点难理解.) 返回一个组合的操作符函数接口类. -- 解释: combiner函数,假如有4个线程同时去执行,那么就会生成4个部分结果. 结果分别是:1.2.3.4 可能是: 1.2 -> 5 5.3 -> 6 6.4 -> 7 这5.6.7新创建的集合,就叫做 新的结果容器 也可能是: 1.2 -> 1+2 (新的一个) 1.3 -> 1(新的一个) 这种新的折叠后的,叫做折叠成一个参数容器. 所以:combiner 是 专门用在 并行流中的. * @return a function which combines two partial results into a combined * result 泛型-A: (结果容器类型.中间结果容器的类型.) TTT */ BinaryOperator<A> combiner();

finisher()#

Copy
/** * Perform the final transformation from the intermediate accumulation type * {@code A} to the final result type {@code R}. *接收一个中间对象,返回另外一个结果.对象. * <p>If the characteristic {@code IDENTITY_TRANSFORM} is * set, this function may be presumed to be an identity transform with an * unchecked cast from {@code A} to {@code R}. *如果这个特性被设置值了的话,..... 返回一个Function接口类型. * @return a function which transforms the intermediate result to the final * result 泛型-A :结果容器类型 泛型-R : 最终要使用的类型.(最终返回的结果的类型.) */ Function<A, R> finisher();

枚举类 Characteristics#

Copy
/** * Characteristics indicating properties of a {@code Collector}, which can * be used to optimize reduction implementations. 这个类中显示的这些属性,被用作:优化汇聚的实现. --解释: 类的作用:告诉收集器,我可以对这个目标进行怎么样的执行动作. */ enum Characteristics { /** * Indicates that this collector is <em>concurrent</em>, meaning that * the result container can support the accumulator function being * called concurrently with the same result container from multiple * threads. * * <p>If a {@code CONCURRENT} collector is not also {@code UNORDERED}, * then it should only be evaluated concurrently if applied to an * unordered data source. */ CONCURRENT,//表示可以支持并发. /** * Indicates that the collection operation does not commit to preserving * the encounter order of input elements. (This might be true if the * result container has no intrinsic order, such as a {@link Set}.) */ UNORDERED, /** * Indicates that the finisher function is the identity function and * can be elided. If set, it must be the case that an unchecked cast * from A to R will succeed. */ IDENTITY_FINISH }

静态内部类 CollectorImpl#

<此静态类在Collectors类中.>

Copy
static class CollectorImpl<T, A, R> implements Collector<T, A, R> { private final Supplier<A> supplier; private final BiConsumer<A, T> accumulator; private final BinaryOperator<A> combiner; private final Function<A, R> finisher; private final Set<Characteristics> characteristics; CollectorImpl(Supplier<A> supplier, BiConsumer<A, T> accumulator, BinaryOperator<A> combiner, Function<A,R> finisher, Set<Characteristics> characteristics) { this.supplier = supplier; this.accumulator = accumulator; this.combiner = combiner; this.finisher = finisher; this.characteristics = characteristics; } CollectorImpl(Supplier<A> supplier, BiConsumer<A, T> accumulator, BinaryOperator<A> combiner, Set<Characteristics> characteristics) { this(supplier, accumulator, combiner, castingIdentity(), characteristics); } @Override public BiConsumer<A, T> accumulator() { return accumulator; } @Override public Supplier<A> supplier() { return supplier; } @Override public BinaryOperator<A> combiner() { return combiner; } @Override public Function<A, R> finisher() { return finisher; } @Override public Set<Characteristics> characteristics() { return characteristics; } }

为什么会定义一个这么一个静态内部类?

  1. 因为,Collectors是一个工厂,向开发者提供非常常见的那些收集器,如counting() , grouping by()....

  2. 绝大多数方法都是静态方法.

  3. Collectors和CollectorImpl紧密相关,结合性非常密切.从设计角度,直接放在一个类里面.


函数式编程的最大特点:表示做什么,而不是如何做.如:toList(), counting()...

Collectors收集器注释:

Copy
/** 收集了常见的一些操作. * Implementations of {@link Collector} that implement various useful reduction * operations, such as accumulating elements into collections, summarizing * elements according to various criteria, etc. * * <p>The following are examples of using the predefined collectors to perform * common mutable reduction tasks: 使用预定义的收集器,去执行课常见的收集任务. 以下案例: * * <pre>{@code * // Accumulate names into a List . 将name融合到LIst中. * List<String> list = people.stream().map(Person::getName).collect(Collectors.toList()); * 融合进TreeSet * // Accumulate names into a TreeSet . * Set<String> set = people.stream().map(Person::getName).collect(Collectors.toCollection(TreeSet::new)); * 转换成字符串,然后用","去分隔. * // Convert elements to strings and concatenate them, separated by commas * String joined = things.stream() * .map(Object::toString) * .collect(Collectors.joining(", ")); * 计算员工的工资的总数. * // Compute sum of salaries of employee * int total = employees.stream() * .collect(Collectors.summingInt(Employee::getSalary))); 分组: 根据部门分组. 分类器 * // Group employees by department * Map<Department, List<Employee>> byDept * = employees.stream() * .collect(Collectors.groupingBy(Employee::getDepartment)); * groupingBy的重载,处理完之后,再处理. * // Compute sum of salaries by department * Map<Department, Integer> totalByDept * = employees.stream() * .collect(Collectors.groupingBy(Employee::getDepartment, * Collectors.summingInt(Employee::getSalary))); * 分区: partitioningBy() * // Partition students into passing and failing * Map<Boolean, List<Student>> passingFailing = * students.stream() * .collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD)); * * }</pre> * * @since 1.8 */

收集器Collectors的Demo

Copy
Student student1 = new Student("zhangsan", 80); Student student2 = new Student("lisi", 90); Student student3 = new Student("wangwu", 100); Student student4 = new Student("zhaoliu", 90); Student student5 = new Student("zhaoliu", 90); List<Student> students = Arrays.asList(student1, student2, student3, student4,student5); //collect()方法深入源码详解 //op1:集合转换为stream, 然后stream转换为List List<Student> students1 = students.stream().collect(Collectors.toList()); students1.forEach(System.out::println); System.out.println("----------"); System.out.println("count: "+ students.stream().collect(counting()));//Collectors类提供的counting()方法 System.out.println("count: "+ students.stream().count()); //stream提供的方法 , 底层实现 mapToLong()->sum //当jdk底层提供有通用的方法和具体的实现方法,越具体的越好. //函数使用. //分数最小值 students.stream().collect(minBy(Comparator.comparingInt(Student::getScore))).ifPresent(System.out::println); //分数最大值 students.stream().collect(maxBy(Comparator.comparingInt(Student::getScore))).ifPresent(System.out::println); //平均值 Double collect4 = students.stream().collect(averagingInt(Student::getScore)); //总和 Integer collect5 = students.stream().collect(summingInt(Student::getScore)); //摘要信息 (分数的汇总信息.) students.stream().collect(summarizingInt(Student::getScore)); System.out.println("---------"); //字符串拼接 String collect1 = students.stream().map(Student::getName).collect(joining()); String collect2 = students.stream().map(Student::getName).collect(joining(","));//带分隔符 String collect3 = students.stream().map(Student::getName).collect(joining(",", "pre", "suf"));//带分隔符.前缀后缀 //分组 //二级分组. 先根据分数分组,再根据名字分组. Map<Integer, Map<String, List<Student>>> collect = students.stream().collect(groupingBy(Student::getScore, groupingBy(Student::getName))); System.out.println(collect); System.out.println("---------"); //分区 //根据分数分区 Map<Boolean, List<Student>> collect6 = students.stream().collect(partitioningBy(student -> student.getScore() > 80)); System.out.println(collect6); System.out.println("---------"); //先分区80, 再分区90 Map<Boolean, Map<Boolean, List<Student>>> collect7 = students.stream().collect(partitioningBy(student -> student.getScore() > 80, partitioningBy(student -> student.getScore() > 90))); System.out.println(collect7); System.out.println("---------"); //可以看出,Collectors是可以聚合的. //先分区,再分组.... 先分区,再求和.... 先分组,再求平均值... 先分组,再进行各种计算... Map<Boolean, Long> collect8 = students.stream().collect(partitioningBy(student -> student.getScore() > 80, counting())); System.out.println(collect8); System.out.println("---------"); //collectingAndThen() 这个方法. 先求最小值,然后再get返回值,一定是有值的. Map<String, Student> collect9 = students.stream().collect(groupingBy(Student::getName, collectingAndThen(minBy(Comparator.comparingInt(Student::getScore)), Optional::get))); System.out.println(collect9);
posted @   dawa大娃bigbaby  阅读(739)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 25岁的心里话
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!
· 零经验选手,Compose 一天开发一款小游戏!
点击右上角即可分享
微信分享提示
CONTENTS