Deeplearning specialization向量化代码(亲测可用)
这是vectorization课程学习的代码笔记,vscode+python编写,另外小虎也在MATLAB使用bsxfun函数进行广播。
Vectorization
时间对比
import time
import numpy as np
a = np.random.rand(1000000)
b = np.random.rand(1000000)
tic = time.time()
c = np.dot(a, b)
toc = time.time()
print(c)
print("vectorized version:" + str(1000*(toc-tic)) + "ms")
c = 0
tic = time.time()
for i in range(1000000):
c += a[i]*b[i]
toc = time.time()
print(c)
print("vectorized version:" + str(1000*(toc-tic)) + "ms")
封装函数算法
import time
import numpy as np
import math
v = np.array([1, 2, 3, 4])
tic = time.time()
u1 = np.zeros((4, 1))
for i in range(4):
u1[i] = math.exp(v[i])
toc = time.time()
print(u1)
print(str(1000 * (toc-tic)) + "ms")
tic = time.time()
u2 = np.exp(v)
toc = time.time()
print(u2)
print(str(1000 * (toc-tic)) + "ms")
# np.log(v), np.abs(v) ,np.maximum(v,0), v**2
brocasting广播
import time
import numpy as np
A = np.array([[56.0, 0.0, 4.4, 68.0],
[1.2, 104.0, 52.0, 8.0],
[1.8, 135.0, 99.0, 0.9]])
cal=A.sum(axis=0)
print(cal)
percentage=100*A/cal.reshape(1,4)
# percentage=100*A/cal
print(percentage)
用bsxfun广播
A=[[56.0, 0.0, 4.4, 68.0];
[1.2, 104.0, 52.0, 8.0];
[1.8, 135.0, 99.0, 0.9]];
cal=sum(A,1)
fun=@(a,b)100*a./b;
percentage=bsxfun(fun,A,cal)
其实小虎觉得没必要用bsxfun,如下,直接算就好了。
A=[[56.0, 0.0, 4.4, 68.0];
[1.2, 104.0, 52.0, 8.0];
[1.8, 135.0, 99.0, 0.9]];
cal=sum(A,1)
percentage=100*A./cal