2022高考全国乙卷理科数学选择第12题
已知定义域为 \(R\) 的函数 \(f(x), g(x)\),满足 \(f(x) + g(2 - x) = 5\),\(g(x) - f(x - 4) = 7\),若 \(y = g(x)\) 的图像关于直线 \(x = 2\) 对称,\(g(2) = 4\),则 $\sum_{k = 1}^{22} f(k) = $
\(A\). \(-21\)
\(B\). \(-22\)
\(C\). \(-23\)
\(D\). \(-24\)
将 \(x_1 = -1, x_2 = 3\) 代入两式,得:\(f(-1) + g(3) = 5, g(3) - f(-1) = 7\)。解出 \(f(-1) = -1, g(3) = 6\)。
因为 \(f(x) = 5 - g(2 - x)\),所以 \(g(x) - 5 + g(6 - x) = 7, g(x) + g(6 - x) = 12\)。
又因为 \(g(2) = 4, g(3) = 6\),所以 \(g(4) = 12 - g(2) = 8, g(1) = g(3), g(5) = 12 - g(1) = 6, g(6) = 4\)。
此时大概可以猜出规律:\(g(x)\) 在整数处函数值为 \(4, 6, 8, 6\) 的循环,每个循环的和为 \(24\)。
\(\sum_{k = 1}^{22} f(k) = \sum_{k = 1}^{22} (5 - g(2 - k)) = 110 - \sum_{k = 1}^{22} g(2 + k)\)。
\(g(6)\) 开始为一个完整循环,\(g(3) + g(4) + g(5) = 20\),循环次数为 \(\lfloor \dfrac{(24 - 6 + 1)}{4} \rfloor = 4\),故此部分的和为 \(24 \times 4\),最后剩余 \(3\) 个数,一定是 \(4, 6, 8\),和为 \(18\)。
以上总和为 \(20 + 24 \times 4 + 18 = 134\)。
故 \(\sum_{k = 1}^{22} f(k) = 110 - 134 = -24\)。
故选 \(D\)。