随机森林(数据思维赛-家电能源预测)

训练集给出如下数据:

 测试集提供其中的部分列:

 

要求预测以下列的数据:

['Tdewpoint', 'Visibility', 'Windspeed', 'RH_out', 'Press_mm_hg', 'RH_9', 'T_out', 'RH_4']

 

使用随机森林进行预测:

复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error

# 读入训练数据和测试数据
train_data = pd.read_csv('train_dataset.csv')
test_data = pd.read_csv('test_dataset.csv')
li=train_data.columns.to_list()[2::]
goal=['Tdewpoint', 'Visibility', 'Windspeed', 'RH_out', 'Press_mm_hg', 'RH_9', 'T_out', 'RH_4']
feature=list(set(li)-set(goal))

# 分离特征变量和目标变量
X = train_data[feature]
y = train_data[goal]

# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建随机森林模型
rf = RandomForestRegressor(n_estimators=100, random_state=42)

# 训练模型
rf.fit(X_train, y_train)

# 预测验证集的结果
y_pred_val = rf.predict(X_val)

# 计算验证集的均方误差
mse = mean_squared_error(y_val, y_pred_val)
print("Validation set MSE: {:.2f}".format(mse))

# 预测测试集的结果
y_pred_test = rf.predict(test_data)

# 保存预测结果到CSV文件
pd.DataFrame(y_pred_test).to_csv('test_result.csv', index=False)
复制代码

 

posted @   打铁老鱼  阅读(43)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
点击右上角即可分享
微信分享提示