Python基础 | pandas中dataframe的整合与形变(merge & reshape)

本文示例数据下载,密码:vwy3

import pandas as pd

# 数据是之前在cnblog上抓取的部分文章信息
df = pd.read_csv('./data/SQL测试用数据_20200325.csv',encoding='utf-8')


# 为了后续演示,抽样生成两个数据集

df1 = df.sample(n=500,random_state=123)
df2 = df.sample(n=600,random_state=234)

# 保证有较多的交集
# 比例抽样是有顺序的,不加random_state,那么两个数据集是一样的

行的union

pandas 官方教程

pd.concat

pd.concat主要参数说明:

  • 要合并的dataframe,可以用[]进行包裹,e.g. [df1,df2,df3];
  • axis=0,axis是拼接的方向,0代表行,1代表列,不过很少用pd.concat来做列的join
  • join='outer'
  • ignore_index: bool = False,看是否需要重置index

如果要达到union all的效果,那么要拼接的多个dataframe,必须:

  • 列名名称及顺序都需要保持一致
  • 每列的数据类型要对应

如果列名不一致就会产生新的列

如果数据类型不一致,不一定报错,要看具体的兼容场景

df2.columns

输出:
Index(['href', 'title', 'create_time', 'read_cnt', 'blog_name', 'date', 'weekday', 'hour'], dtype='object')

# 这里故意修改下第2列的名称
df2.columns = ['href', 'title_2', 'create_time', 'read_cnt', 'blog_name', 'date','weekday', 'hour']

print(df1.shape,df2.shape)

# inner方法将无法配对的列删除
# 拼接的方向,默认是就行(axis=0)
df_m = pd.concat([df1,df2],axis=0,join='inner')

print(df_m.shape)

输出:
(500, 8) (600, 8)
(1100, 7)

# 查看去重后的数据集大小
df_m.drop_duplicates(subset='href').shape

输出:
(849, 7)

df.append

和pd.concat方法的区别:

  • append只能做行的union
  • append方法是outer join

相同点:

  • append可以支持多个dataframe的union
  • append大致等同于 pd.concat([df1,df2],axis=0,join='outer')
df1.append(df2).shape

输出:
(1100, 9)

df1.append([df2,df2]).shape

输出:
(1700, 9)

列的join

pd.concat

pd.concat也可以做join,不过关联的字段不是列的值,而是index

也因为是基于index的关联,所以pd.concat可以对超过2个以上的dataframe做join操作

# 按列拼接,设置axis=1
# inner join
print(df1.shape,df2.shape)

df_m_c = pd.concat([df1,df2], axis=1, join='inner')

print(df_m_c.shape)

输出:
(500, 8) (600, 8)
(251, 16)

这里是251行,可以取两个dataframe的index然后求交集看下

set1 = set(df1.index)
set2 = set(df2.index)

set_join = set1.intersection(set2)

print(len(set1), len(set2), len(set_join))

输出:
500 600 251

pd.merge

pd.merge主要参数说明:

  • left, join操作左侧的那一个dataframe
  • right, join操作左侧的那一个dataframe, merge方法只能对2个dataframe做join
  • how: join方式,默认是inner,str = 'inner'
  • on=None 关联的字段,如果两个dataframe关联字段一样时,设置on就行,不用管left_on,right_on
  • left_on=None 左表的关联字段
  • right_on=None 右表的关联字段,如果两个dataframe关联字段名称不一样的时候就设置左右字段
  • suffixes=('_x', '_y'), join后给左右表字段加的前缀,除关联字段外
print(df1.shape,df2.shape)

df_m = pd.merge(left=df1, right=df2\
               ,how='inner'\
               ,on=['href','blog_name']
               )

print(df_m.shape)

输出:
(500, 8) (600, 8)
(251, 14)

print(df1.shape,df2.shape)

df_m = pd.merge(left=df1, right=df2\
               ,how='inner'\
               ,left_on = 'href',right_on='href'
               )

print(df_m.shape)

输出:
(500, 8) (600, 8)
(251, 15)

# 对比下不同join模式的区别
print(df1.shape,df2.shape)

# inner join 
df_inner = pd.merge(left=df1, right=df2\
               ,how='inner'\
               ,on=['href','blog_name']
               )

# full outer join 
df_full_outer = pd.merge(left=df1, right=df2\
               ,how='outer'\
               ,on=['href','blog_name']
               )

# left outer join 
df_left_outer = pd.merge(left=df1, right=df2\
               ,how='left'\
               ,on=['href','blog_name']
               )

# right outer join 
df_right_outer = pd.merge(left=df1, right=df2\
               ,how='right'\
               ,on=['href','blog_name']
               )
print('inner join 左表∩右表:' + str(df_inner.shape))
print('full outer join 左表∪右表:' + str(df_full_outer.shape))
print('left outer join 左表包含右表:' + str(df_left_outer.shape))
print('right outer join 右表包含左表:' + str(df_right_outer.shape))

输出:
(500, 8) (600, 8)
inner join 左表∩右表:(251, 14)
full outer join 左表∪右表:(849, 14)
left outer join 左表包含右表:(500, 14)
right outer join 右表包含左表:(600, 14)

df.join

df.join主要参数说明:

  • other 右表
  • on 关联字段,这个和pd.concat做列join一样,是关联index的
  • how='left'
  • lsuffix='' 左表后缀
  • rsuffix='' 右表后缀
print(df1.shape,df2.shape)

df_m = df1.join(df2, how='inner',lsuffix='1',rsuffix='2')

df_m.shape

输出:
(500, 8) (600, 8)
(251, 16)

行列转置

pandas 官方教程

# 数据准备
import math
df['time_mark'] = df['hour'].apply(lambda x:math.ceil(int(x)/8))

df_stat_raw = df.pivot_table(values= ['read_cnt','href']\
                               ,index=['weekday','time_mark']\
                               ,aggfunc={'read_cnt':'sum','href':'count'})
                               
df_stat = df_stat_raw.reset_index()
df_stat.head(3)

如上所示,df_stat是两个维度weekday,time_mark
以及两个计量指标 href, read_cnt

pivot

# pivot操作中,index和columns都是维度
res = df_stat.pivot(index='weekday',columns='time_mark',values='href').reset_index(drop=True)
res

stack & unstack

  • stack则是将层级最低(默认)的column转化为index
  • unstack默认是将排位最靠后的index转成column(column放到下面)


# pandas.pivot_table生成的结果如下
df_stat_raw
# unstack默认是将排位最靠后的index转成column(column放到下面)
df_stat_raw.unstack()

# unstack也可以指定index,然后转成最底层的column
df_stat_raw.unstack('weekday')

# 这个语句的效果是一样的,可以指定`index`的位置
# stat_raw.unstack(0)
# stack则是将层级醉倒的column转化为index
df_stat_raw.unstack().stack().head(5)
# 经过两次stack后就成为多维表了
# 每次stack都会像洋葱一样将column放到左侧的index来(放到index序列最后)
df_stat_raw.unstack().stack().stack().head(5)

输出:

weekday  time_mark          
1        0          href            4
                    read_cnt     2386
         1          href           32
                    read_cnt    31888
         2          href           94
dtype: int64
pd.DataFrame(df_stat_raw.unstack().stack().stack()).reset_index().head(5)

melt

melt方法中id_vals是指保留哪些作为维度(index),剩下的都看做是数值(value)

除此之外,会另外生成一个维度叫variable,列转行后记录被转的的变量名称

print(df_stat.head(5))

df_stat.melt(id_vars=['weekday']).head(5)
df_stat.melt(id_vars=['weekday','time_mark']).head(5)
posted @ 2020-04-04 22:50  dataxon  阅读(9492)  评论(0编辑  收藏  举报