2020年6月13日
摘要: 上一篇笔记决策树(一)里学习了决策树的ID3算法,和ID3算法的改进版C4.5算法。对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等。对于这些问题,CART算法大部分做了改进。下面我们就来学习CART算法的相关内容。 阅读全文
posted @ 2020-06-13 14:00 WarningMessage 阅读(465) 评论(0) 推荐(0) 编辑
摘要: 决策树(decision tree)是一类常见的机器学习方法。以二分类任务为例,我们希望从给定训练数据集学得一个模型用以对新的示例进行分类,这个把样本分类的任务,可以看作对“当前样本属于正类吗?”这个问题的“决策”或“判别”过程。顾名思义,决策树是基于树结构来进行决策的,这恰是人类在面临决策问题时一种很自然的处理机制。 阅读全文
posted @ 2020-06-13 13:58 WarningMessage 阅读(2497) 评论(0) 推荐(0) 编辑