Processing math: 0%

随笔- 84  文章- 0  评论- 7  阅读- 11万 

方差(Variance):方差是标准差(Standard deviation)的平方,而标准差的意义是数据集中各点到均值点距离的平均值。反应的是数据的离散程度。假设X是一个随机变量,则方差可以表示为:

var(X) = E[(X-E(X))(X-E(X))]=E[(X-E(X))^2]

其中,E(X)是随机变量X的期望。

协方差(Covariance):标准差与方差是描述一维数据的,当存在多维数据时,我们通常需要知道每个维数的变量之间是否存在关联。协方差就是衡量多维数据集中变量之间相关性的统计量。比如说,一个人的身高与他的体重的关系,这就需要用协方差来衡量。如果两个变量之间的协方差为正值,则这两个变量之间存在正相关,若为负值,则为负相关。

协方差的意义:在概率论中,两个随机变量XY之间的相互关系,大致有下列3种情况:

1)当XY的联合分布像图(2.1)那样时,我们可以看出,大致上有:X越大Y也越大,X越小Y也越小,这种情况,我们称为“正相关”。


图2.1 随机变量X与Y正相关

2)当XY的联合分布像图(2.2)那样时,我们可以看出,大致上有:X越大Y反而越小,X越小Y反而越大,这种情况,我们称为“负相关”。


图2.2 随机变量X与Y负相关

3)当XY的联合分布像图(2.3)那样时,我们可以看出,大致上有:既不是X越大Y也越大,也不是X越大Y反而越小,这种情况我们称为“不相关”。


图2.3 随机变量X与Y不相关

那么,怎样将这3种相关情况,用一个简单的数学表达式表达出来呢?观察上面3种情况的图可以看出:

  1)在3幅图的区域(1)中,有X \gt E(X)Y-E(Y) \gt 0,所以(X-E(X))(Y-E(Y)) \gt 0
  2)在3幅图的区域(2)中,有X \lt E(X)Y-E(Y) \gt 0,所以(X-E(X))(Y-E(Y)) \lt 0
  3)在3幅图的区域(3)中,有X \lt E(X)Y-E(Y) \lt 0,所以(X-E(X))(Y-E(Y)) \gt 0
  4)在3幅图的区域(4)中,有X \gt E(X)Y-E(Y) \lt 0,所以(X-E(X))(Y-E(Y)) \lt 0

所以很直观地看:

XY正相关时,它们的分布大部分在区域(1)和(3)中,小部分在区域(2)和(4)中,所以平均来说,有E[(X-E(X))(Y-E(Y))] \gt 0;
XY负相关时,它们的分布大部分在区域(2)和(4)中,小部分在区域(1)和(3)中,所以平均来说,有E[(X-E(X))(Y-E(Y))] \lt 0;
XY不相关时,它们的分布在区域(1)和(3)中,与(2)和(4)中的几乎一样多,所以平均来说,有E]X-E(X))(Y-E(Y)]=0

所以,我们可以定义一个表示XY相互关系的数字特征,也就是协方差

cov(X, Y) = E[(X-E(X))(Y-E(Y))]

cov(X, Y) \gt 0时,表明XY正相关;
cov(X, Y) \lt 0时,表明XY负相关;
cov(X, Y) = 0时,表明XY不相关。

这就是协方差的意义。

协方差矩阵,当变量多了,超过两个变量了。那么,就用协方差矩阵来衡量多变量之间的相关性。假设X是以n个随机变数(其中的每个随机变数也是一个向量,当然是一个行向量)组成的列向量:

X = \left[\begin{matrix}X_1 \\ X_2 \\ \vdots \\ X_n \end{matrix}\right]

其中,\mu_i是第i个元素的期望值,i=1, 2, \dots , n,即\mu_i=E(X_i)。协方差矩阵的第ij项(第ij项是X_iX_j的协方差)被定义为如下形式:

\sum_{ij} = cov(X_i, X_j) = E[(X_i-\mu_i)(X_j-\mu_j)]

则协方差矩阵可以表示为:

\sum = \left[\begin{matrix}E[(X_1-\mu_1)(X_1-\mu_1)] & E[(X_1-\mu_1)(X_2-\mu_2)] & \cdots &E[(X_1-\mu_1)(X_n-\mu_n)] \\ E[(X_2-\mu_2)(X_1-\mu_1)] & E[(X_2-\mu_2)(X_2-\mu_2)] & \cdots &E[(X_2-\mu_2)(X_n-\mu_n)]\\ \vdots & \vdots & \ddots & \vdots\\ E[(X_n-\mu_n)(X_1-\mu_1)] & E[(X_n-\mu_n)(X_2-\mu_2)] & \cdots &E[(X_n-\mu_n)(X_n-\mu_n)] \end{matrix}\right]

那么,协方差矩阵中的元素对数据的分布有什么影响呢?

首先,我们来看看一维正态分布随机变量的分布与均值\mu\sigma的关系,如图(2.4)所示:


图2.4 一维正态分布随机变量的分布与均值和方差的关系

可以看出:
  1)均值决定了分布的中心点位置
  2)方差决定了分布图形的形状是“胖”(圆)还是“瘦”(扁)

接下来,协方差矩阵中的元素对数据的分布影响,以二维正态分布为例,其中包含3个不同取值的均值(向量)和协方差矩阵:
1)3组数据的协方差矩阵相同,都为对角阵,对角线元素相同,如图(2.5):


图2.5
2)3组数据的协方差矩阵相同,都为对角阵,对角线元素不同,如图(2.6):

图2.6
3)3组数据的协方差矩阵相同,不是对角阵,对角线元素不同,如图(2.7):

图2.7
4)3组数据的协方差矩阵不同,都是对角阵,对角线元素相同,如图(2.8):

图2.8
5)3组数据的协方差矩阵不同,不是对角阵,对角线元素不同,如图(2.9):

图2.9

可以看出:

  1)均值为分布的中心点位置。
  2)对角线元素决定了分布图形是圆还是扁。
  3)非对角线元素决定了分布图形的轴向(扁的方向)。

参考来源:
1)https://www.jianshu.com/p/5706a108a0c6

 posted on   WarningMessage  阅读(1310)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
点击右上角即可分享
微信分享提示