SPOJ - UNTITLE1 分类: spoj 2015-08-06 17:40 12人阅读 评论(0) 收藏


http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=22254

You are given a sequence of N integers A1, A2 .. AN. (-10000 <= Ai <= 10000, N <= 50000)

Let Si denote the sum of A1..Ai. You need to apply M (M <= 50000) operations:

0 x y k: increase all integers from Ax to Ay by k(1 <= x <= y <= N, -10000 <= k <= 10000).
1 x y: ask for max{ Si | x <= i <= y }.(1 <= x <= y <= N)


对于区间增值[L,R,k]

L<=i<=R,那么 S[i]=S[i]+k(iL+1)=S[i]+ki+k(1L)

i>R,那么 S[i]=S[i]+(RL+1)

可以写成这个形式: S[i]=X[i]i+Y[i]


将序列分成N 块,每块记录两个标记 sumkadd

表示对于这个块内元素都加值 sumki+add


对于区间加值的操作,修改整块的标记,对于不在整块的部分暴力修改即可。

对于询问操作,考虑得到单块的答案,观察 S[i]=sumki+add

可以发现,它可以写成斜率形式,可以用斜率优化来得到单块内的S[i]最大值,在凸包上二分斜率或者三分点即可。

但是斜率优化需要维护凸包,区间加值操作时对于修改了S[i]的块重新建造凸包即可。


时间复杂度:O(MNlogN)



#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <string>
#include <map>
#include <vector>
#include <stack>
#include <queue>
#include <utility>
#include <iostream>
#include <algorithm>

template<class Num>void read(Num &x)
{
    char c; int flag = 1;
    while((c = getchar()) < '0' || c > '9')
        if(c == '-') flag *= -1;
    x = c - '0';
    while((c = getchar()) >= '0' && c <= '9')
        x = (x<<3) + (x<<1) + (c-'0');
    x *= flag;
    return;
}
template<class Num>void write(Num x)
{
    if(x < 0) putchar('-'), x = -x;
    static char s[20];int sl = 0;
    while(x) s[sl++] = x%10 + '0',x /= 10;
    if(!sl) {putchar('0');return;}
    while(sl) putchar(s[--sl]);
}

const double eps = 1e-3;
const int maxn = 50005, maxS = 300, maxB = 300;
const long long LINF = 1LL<<60;

#define REP(__x,__st,__ed) for(int __x = (__st); __x <= (__ed); __x++)

int n, m, S, B, a[maxn];
long long sum[maxn], sk[maxB], c[maxB];

struct type_block
{
    int id, ll, rr;
    int t[maxS], len;


#define check(x,y,z) ((y - x)*(sum[z] - sum[y]) - (sum[y] - sum[x])*(z - y) >= 0)   
    void build()
    {
        len = 0;

        for(int i = ll; i <= rr; i++)
        {
            while(len >= 2 && check(t[len-1], t[len], i)) t[len--] = 0;

            t[++len] = i;
        }
    }
#undef check

    void init(int __id)
    {
        id = __id;
        ll = (id - 1)*S + 1;
        rr = std::min(id * S, n);
        build();
    }

    long long calcu()
    {
        int l = 1, r = len;
        long long c1, c2, ret = -LINF;

        while(r - l >= 5)
        {
            int mid1 = (l + r)>>1, mid2 = (mid1 + r)>>1;
            c1 = sum[t[mid1]] + t[mid1]*sk[id];
            c2 = sum[t[mid2]] + t[mid2]*sk[id];

            if(c1 < c2) l = mid1; else r = mid2;
        }
        for(int i = l; i <= r; i++)
            ret = std::max(ret, sum[t[i]] + t[i]*sk[id]);
        return ret + c[id];
    }
}block[maxB];

int main()
{
#ifndef ONLINE_JUDGE    
    freopen("spoj.in","r",stdin);
    freopen("spoj.out","w",stdout);
#endif  

    read(n);

    S = sqrt(n) + eps, B = n/S + ((n%S)?1:0);

    REP(i, 1, n) read(a[i]), sum[i] = sum[i-1] + a[i];
    REP(i, 1, B) block[i].init(i);

    read(m);

    REP(i, 1, m)
    {
        int op, l, r, k;
        int l_blo, r_blo, st, ed;

        read(op), read(l), read(r);

        l_blo = (l - 1)/S + 1;
        r_blo = (r - 1)/S + 1;
        st = block[l_blo + 1].ll;
        ed = block[r_blo - 1].rr;

        if(!op)
        {
            read(k);
            if(l_blo == r_blo)
            {
                REP(i, l, r) sum[i] += (i - l + 1)*k;
                ed += S, ed = std::min(ed, n);  
                REP(i, r + 1, ed) sum[i] += (r - l + 1)*k;

                REP(i, r_blo + 1, B) c[i] += (r - l + 1)*k; 
                block[l_blo].build();   
            }
            else
            {

                REP(i, l, st - 1) sum[i] += (i - l + 1)*k;
                REP(i, l_blo + 1, r_blo - 1)  sk[i] += k, c[i] += (1 - l)*k;
                REP(i, ed + 1, r) sum[i] += (i - l + 1)*k;
                ed += S, ed = std::min(ed, n);  
                REP(i, r + 1, ed) sum[i] += (r - l + 1)*k;
                REP(i, r_blo + 1, B) c[i] += (r - l + 1)*k; 

                block[l_blo].build();
                block[r_blo].build();
            }
        }
        else
        {
            long long ans = -LINF;

            if(l_blo == r_blo)
            {
                REP(i, l, r) ans = std::max(sum[i] + i*sk[l_blo] + c[l_blo], ans);
            }
            else
            {
                REP(i, l, st - 1) ans = std::max(sum[i] + i*sk[l_blo] + c[l_blo], ans);
                REP(i, l_blo + 1, r_blo - 1) ans = std::max(block[i].calcu(), ans);
                REP(i, ed + 1, r) ans = std::max(sum[i] + i*sk[r_blo] + c[r_blo], ans);
            }
            write(ans), puts("");
        }

    }



#ifndef ONLINE_JUDGE    
    fclose(stdin);
    fclose(stdout);
#endif  
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

posted @ 2015-08-06 17:40  <Dash>  阅读(136)  评论(0编辑  收藏  举报