二叉搜索树

二叉查找树(英语:Binary Search Tree),也称为二叉搜索树、有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree)

性质

指一棵空树或者具有下列性质的二叉树:

  1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值
  2. 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
  3. 任意节点的左、右子树也分别为二叉查找树;
  4. 没有键值相等的节点。

优势

二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。为O(logn)
。二叉查找树是基础性数据结构,用于构建更为抽象的数据结构,如集合、多重集、关联数组等。

二叉搜索树的查找算法

在二叉搜索树b中查找x的过程为:

  1. 若b是空树,则搜索失败,否则:
  2. 若x等于b的根节点的数据域之值,则查找成功;否则:
  3. 若x小于b的根节点的数据域之值,则搜索左子树;否则:
  4. 查找右子树。

在二叉搜索树插入节点的算法

向一个二叉搜索树b中插入一个节点s的算法,过程为:

  1. 若b是空树,则将s所指节点作为根节点插入,否则:
  2. 若s->data等于b的根节点的数据域之值,则返回,否则:
  3. 若s->data小于b的根节点的数据域之值,则把s所指节点插入到左子树中,否则:
  4. 把s所指节点插入到右子树中。(新插入节点总是叶子节点)
posted @ 2019-08-17 17:41  darylc  阅读(146)  评论(0编辑  收藏  举报