(原)Ubuntu16中安装cuda toolkit

转载请注明出处:

http://www.cnblogs.com/darkknightzh/p/5655957.html

参考网址:

https://devtalk.nvidia.com/default/topic/862537/cuda-setup-and-installation/installing-cuda-toolkit-on-ubuntu-14-04/

http://unix.stackexchange.com/questions/38560/gpu-usage-monitoring-cuda

http://blog.csdn.net/revolver/article/details/49682131

 

一 在终端中直接安装

说明:由于nvidia并未给出ubuntu16上面的cuda toolkit,本文方法不一定可行,我这边安装成功,感觉完全是瞎猫碰死耗子了。。。不过没有安装sample,只是其他程序可以使用显卡了。

 

1. 第一个网址,使用

sudo apt-get install nvidia-cuda-toolkit

安装cuda toolkit,要看网速,下载很慢。还有,网址中说重启ubuntu有问题(I can't log in to my computer and end up in infinite login screen)。我这边安装了之后,正常登陆了,没有出现问题。

2. 安装完之后的信息:

装的是7.5.17,不是最新的7.5.18,但是能用就行。

3. 第二个网址中qed给出了在终端中持续显示GPU当前的使用率(仅限nvidia的显卡):

 nvidia-smi -l 1

结果:

说明:上面的命令貌似要显卡支持才行。也可以使用Jonathan提供的命令(目前没测试):

watch -n0.1 "nvidia-settings -q GPUUtilization -q useddedicatedgpumemory"

160713说明:a. 这条命令显示信息如下:

b. 其实这条命令就是在终端中显示‘NVIDIA X serve settings’中的一些信息,如下(NVIDIA X serve settings位置为/usr/share/applications,也可以直接打开该软件查看):

c. 由于这张图使用的GPU和之前使用的GPU不一样,因而参数不一致(比如显存)。

4. 安装完cuda之后,安装cutorch,之后安装cunn,都安装成功。使用GPU的程序也能正常运行。

5. 第三个参考网址中给出了测试程序,本处稍微进行了修改,打印出来每次循环执行的时间(CPU版本和GPU版本代码实际上差不多):

① CPU版本:

require 'torch'
require 'nn'
require 'optim'
--require 'cunn'
--require 'cutorch'
mnist = require 'mnist'

fullset = mnist.traindataset()
testset = mnist.testdataset()

trainset = {
    size = 50000,
    data = fullset.data[{{1,50000}}]:double(),
    label = fullset.label[{{1,50000}}]
}

validationset = {
    size = 10000,
    data = fullset.data[{{50001,60000}}]:double(),
    label = fullset.label[{{50001,60000}}]
}

trainset.data = trainset.data - trainset.data:mean()
validationset.data = validationset.data - validationset.data:mean()


model = nn.Sequential()
model:add(nn.Reshape(1, 28, 28))
model:add(nn.MulConstant(1/256.0*3.2))
model:add(nn.SpatialConvolutionMM(1, 20, 5, 5, 1, 1, 0, 0))
model:add(nn.SpatialMaxPooling(2, 2 , 2, 2, 0, 0))
model:add(nn.SpatialConvolutionMM(20, 50, 5, 5, 1, 1, 0, 0))
model:add(nn.SpatialMaxPooling(2, 2 , 2, 2, 0, 0))
model:add(nn.Reshape(4*4*50))
model:add(nn.Linear(4*4*50, 500))
model:add(nn.ReLU())
model:add(nn.Linear(500, 10))
model:add(nn.LogSoftMax())

model = require('weight-init')(model, 'xavier')

criterion = nn.ClassNLLCriterion()

--model = model:cuda()
--criterion = criterion:cuda()
--trainset.data = trainset.data:cuda()
--trainset.label = trainset.label:cuda()
--validationset.data = validationset.data:cuda()
--validationset.label = validationset.label:cuda()--[[]]

sgd_params = {
   learningRate = 1e-2,
   learningRateDecay = 1e-4,
   weightDecay = 1e-3,
   momentum = 1e-4
}

x, dl_dx = model:getParameters()

step = function(batch_size)
    local current_loss = 0
    local count = 0
    local shuffle = torch.randperm(trainset.size)
    batch_size = batch_size or 200
    for t = 1,trainset.size,batch_size do
        -- setup inputs and targets for this mini-batch
        local size = math.min(t + batch_size - 1, trainset.size) - t
        local inputs = torch.Tensor(size, 28, 28)--:cuda()
        local targets = torch.Tensor(size)--:cuda()
        for i = 1,size do
            local input = trainset.data[shuffle[i+t]]
            local target = trainset.label[shuffle[i+t]]
            -- if target == 0 then target = 10 end
            inputs[i] = input
            targets[i] = target
        end
        targets:add(1)
        local feval = function(x_new)
            -- reset data
            if x ~= x_new then x:copy(x_new) end
            dl_dx:zero()

            -- perform mini-batch gradient descent
            local loss = criterion:forward(model:forward(inputs), targets)
            model:backward(inputs, criterion:backward(model.output, targets))

            return loss, dl_dx
        end

        _, fs = optim.sgd(feval, x, sgd_params)

        -- fs is a table containing value of the loss function
        -- (just 1 value for the SGD optimization)
        count = count + 1
        current_loss = current_loss + fs[1]
    end

    -- normalize loss
    return current_loss / count
end

eval = function(dataset, batch_size)
    local count = 0
    batch_size = batch_size or 200
    
    for i = 1,dataset.size,batch_size do
        local size = math.min(i + batch_size - 1, dataset.size) - i
        local inputs = dataset.data[{{i,i+size-1}}]--:cuda()
        local targets = dataset.label[{{i,i+size-1}}]:long()--:cuda()
        local outputs = model:forward(inputs)
        local _, indices = torch.max(outputs, 2)
        indices:add(-1)
        local guessed_right = indices:eq(targets):sum()
        count = count + guessed_right
    end

    return count / dataset.size
end

max_iters = 5

do
    local last_accuracy = 0
    local decreasing = 0
    local threshold = 1 -- how many deacreasing epochs we allow
    for i = 1,max_iters do
        timer = torch.Timer()
      
        local loss = step()
        print(string.format('Epoch: %d Current loss: %4f', i, loss))
        local accuracy = eval(validationset)
        print(string.format('Accuracy on the validation set: %4f', accuracy))
        if accuracy < last_accuracy then
            if decreasing > threshold then break end
            decreasing = decreasing + 1
        else
            decreasing = 0
        end
        last_accuracy = accuracy
        
        print('Time elapsed: ' .. i .. 'iter: ' .. timer:time().real .. ' seconds')
    end
end

testset.data = testset.data:double()
eval(testset)

② GPU版本:

  1 require 'torch'
  2 require 'nn'
  3 require 'optim'
  4 require 'cunn'
  5 require 'cutorch'
  6 mnist = require 'mnist'
  7 
  8 fullset = mnist.traindataset()
  9 testset = mnist.testdataset()
 10 
 11 trainset = {
 12     size = 50000,
 13     data = fullset.data[{{1,50000}}]:double(),
 14     label = fullset.label[{{1,50000}}]
 15 }
 16 
 17 validationset = {
 18     size = 10000,
 19     data = fullset.data[{{50001,60000}}]:double(),
 20     label = fullset.label[{{50001,60000}}]
 21 }
 22 
 23 trainset.data = trainset.data - trainset.data:mean()
 24 validationset.data = validationset.data - validationset.data:mean()
 25 
 26 
 27 model = nn.Sequential()
 28 model:add(nn.Reshape(1, 28, 28))
 29 model:add(nn.MulConstant(1/256.0*3.2))
 30 model:add(nn.SpatialConvolutionMM(1, 20, 5, 5, 1, 1, 0, 0))
 31 model:add(nn.SpatialMaxPooling(2, 2 , 2, 2, 0, 0))
 32 model:add(nn.SpatialConvolutionMM(20, 50, 5, 5, 1, 1, 0, 0))
 33 model:add(nn.SpatialMaxPooling(2, 2 , 2, 2, 0, 0))
 34 model:add(nn.Reshape(4*4*50))
 35 model:add(nn.Linear(4*4*50, 500))
 36 model:add(nn.ReLU())
 37 model:add(nn.Linear(500, 10))
 38 model:add(nn.LogSoftMax())
 39 
 40 model = require('weight-init')(model, 'xavier')
 41 
 42 criterion = nn.ClassNLLCriterion()
 43 
 44 model = model:cuda()
 45 criterion = criterion:cuda()
 46 trainset.data = trainset.data:cuda()
 47 trainset.label = trainset.label:cuda()
 48 validationset.data = validationset.data:cuda()
 49 validationset.label = validationset.label:cuda()--[[]]
 50 
 51 sgd_params = {
 52    learningRate = 1e-2,
 53    learningRateDecay = 1e-4,
 54    weightDecay = 1e-3,
 55    momentum = 1e-4
 56 }
 57 
 58 x, dl_dx = model:getParameters()
 59 
 60 step = function(batch_size)
 61     local current_loss = 0
 62     local count = 0
 63     local shuffle = torch.randperm(trainset.size)
 64     batch_size = batch_size or 200
 65     for t = 1,trainset.size,batch_size do
 66         -- setup inputs and targets for this mini-batch
 67         local size = math.min(t + batch_size - 1, trainset.size) - t
 68         local inputs = torch.Tensor(size, 28, 28):cuda()
 69         local targets = torch.Tensor(size):cuda()
 70         for i = 1,size do
 71             local input = trainset.data[shuffle[i+t]]
 72             local target = trainset.label[shuffle[i+t]]
 73             -- if target == 0 then target = 10 end
 74             inputs[i] = input
 75             targets[i] = target
 76         end
 77         targets:add(1)
 78         local feval = function(x_new)
 79             -- reset data
 80             if x ~= x_new then x:copy(x_new) end
 81             dl_dx:zero()
 82 
 83             -- perform mini-batch gradient descent
 84             local loss = criterion:forward(model:forward(inputs), targets)
 85             model:backward(inputs, criterion:backward(model.output, targets))
 86 
 87             return loss, dl_dx
 88         end
 89 
 90         _, fs = optim.sgd(feval, x, sgd_params)
 91 
 92         -- fs is a table containing value of the loss function
 93         -- (just 1 value for the SGD optimization)
 94         count = count + 1
 95         current_loss = current_loss + fs[1]
 96     end
 97 
 98     -- normalize loss
 99     return current_loss / count
100 end
101 
102 eval = function(dataset, batch_size)
103     local count = 0
104     batch_size = batch_size or 200
105     
106     for i = 1,dataset.size,batch_size do
107         local size = math.min(i + batch_size - 1, dataset.size) - i
108         local inputs = dataset.data[{{i,i+size-1}}]:cuda()
109         local targets = dataset.label[{{i,i+size-1}}]:long():cuda()
110         local outputs = model:forward(inputs)
111         local _, indices = torch.max(outputs, 2)
112         indices:add(-1)
113         local guessed_right = indices:eq(targets):sum()
114         count = count + guessed_right
115     end
116 
117     return count / dataset.size
118 end
119 
120 max_iters = 5
121 
122 do
123     local last_accuracy = 0
124     local decreasing = 0
125     local threshold = 1 -- how many deacreasing epochs we allow
126     for i = 1,max_iters do
127         timer = torch.Timer()
128       
129         local loss = step()
130         print(string.format('Epoch: %d Current loss: %4f', i, loss))
131         local accuracy = eval(validationset)
132         print(string.format('Accuracy on the validation set: %4f', accuracy))
133         if accuracy < last_accuracy then
134             if decreasing > threshold then break end
135             decreasing = decreasing + 1
136         else
137             decreasing = 0
138         end
139         last_accuracy = accuracy
140         
141         print('Time elapsed: ' .. i .. 'iter: ' .. timer:time().real .. ' seconds')
142     end
143 end
144 
145 testset.data = testset.data:double()
146 eval(testset)

==================================================================================

17012更新:

今天重新试了一下上面的程序,提示下面的错误:

Epoch: 1 Current loss: 0.652170	
/home/XXX/torch/install/bin/luajit: testGPU.lua:113: invalid arguments: CudaLongTensor CudaTensor 
expected arguments: [*CudaByteTensor*] CudaLongTensor long | *CudaLongTensor* CudaLongTensor long | [*CudaByteTensor*] CudaLongTensor CudaLongTensor | *CudaLongTensor* CudaLongTensor CudaLongTensor
stack traceback:
	[C]: in function 'eq'
	testGPU.lua:113: in function 'eval'
	testGPU.lua:131: in main chunk
	[C]: in function 'dofile'
	...gram/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:150: in main chunk
	[C]: at 0x00405d50

在GPU代码第113行加上下面一句话,就可以成功运行了:

indices=indices:cuda()

真是见鬼了。。。

170121更新结束

==================================================================================

6. CPU和GPU使用率

① CPU版本

CPU情况:

GPU情况:

② GPU版本

CPU情况:

GPU情况:

7. 可以看出,CPU版本的程序,CPU全部使用上了,GPU则基本没用。GPU版本,只有一个核心(线程)的CPU完全是用上了,其他的则在围观。。。而GPU使用率已经很高了。

8. 时间比较

CPU版本:

Epoch: 1 Current loss: 0.619644
Accuracy on the validation set: 0.924800
Time elapsed: 1iter: 895.69850516319 seconds
Epoch: 2 Current loss: 0.225129
Accuracy on the validation set: 0.949000
Time elapsed: 2iter: 914.15352702141 seconds

GPU版本:

Epoch: 1 Current loss: 0.687380
Accuracy on the validation set: 0.925300
Time elapsed: 1iter: 14.031280994415 seconds
Epoch: 2 Current loss: 0.231011
Accuracy on the validation set: 0.944000
Time elapsed: 2iter: 13.848378896713 seconds
Epoch: 3 Current loss: 0.167991
Accuracy on the validation set: 0.959800
Time elapsed: 3iter: 14.071791887283 seconds
Epoch: 4 Current loss: 0.135209
Accuracy on the validation set: 0.963700
Time elapsed: 4iter: 14.238609790802 seconds
Epoch: 5 Current loss: 0.113471
Accuracy on the validation set: 0.966800
Time elapsed: 5iter: 14.328102111816 seconds

说明:① CPU为4790K@4.4GHZ(8线程全开时,应该没有这么高的主频,具体多少没注意);GPU为nvidia GTX 970。

② 由于CPU版本的执行时间实在太长,我都怀疑程序是否有问题了。。。但是看着CPU一直100%的全力工作,又不忍心暂停。直到第一次循环结束,用了将近900s,才意识到,原来程序应该木有错误。。。等第二次循环结束,就直接停止测试了。。。GPU版本的程序,每次循环则只用14s,时间上差距。。。额,使用CPU执行时间是GPU执行时间的64倍。。。

160727更新:

用了780和k80测试了一下,780要用18s迭代一次epoch,k80。。。额,迭代一次要23s(使用一个核心)。当然,只针对我这里的程序是这个结果,其他的,不太清楚。

============================================================================================

170121更新

 使用笔记本的1060显卡测试了一下上面的程序,迭代一次用时10s(不保证其他条件完全一致,目前使用的是cuda8.0),不过即便是移动端的1060(虽说10系列移动端已经没有m标志了,但是参数和桌面版还是不完全一样),也还是比桌面版的970要强一点。

170121更新结束

============================================================================================

170505更新

 重新配置了torch,使用1080Ti的显卡。但是测试上面的程序,迭代一次用时9s(不保证其他条件完全一致,目前使用的是cuda8.0)。理论上1080Ti比1060性能强一倍应该是有的,但是上面的程序迭代时,差距没有体现出来。累觉不爱。。。/(ㄒoㄒ)/~~

170505更新结束

============================================================================================

170613更新

使用tensorflow进行训练,同样的程序,迭代一次,k80单核要1.2s多,1080Ti要0.36s。性能差距体现出来了。之前性能差距无法体现出来的原因是,上面的测试程序过于简单(和程序有关,和torch及tensorflow无关。如果torch上复杂的程序,这两个卡性能差距也差不多这样),不能完全发挥1080Ti的性能(不清楚上面的程序,k80是否完全发挥出来了)。新的测试程序,1080Ti和K80的GPU utilization基本上都是在90%——100%,这种情况下,才能真正考验这两个显卡的性能差距。

170613更新结束

============================================================================================

二 在官网下载安装

170121更新

https://developer.nvidia.com/cuda-downloads中可以下载cuda。

1. 若下载deb文件

然后使用如下命令安装:

sudo dpkg -i cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda

 之后编辑.bashrc:

gedit .bashrc

输入:

export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/bin/lib64:$LD_LIBRARY_PATH

之后终端中输入:

source ~/.bashrc

之后再输入:

nvcc --version

2. 若下载run文件

终端中输入:

sudo sh cuda_8.0.61_375.26_linux.run

之后按照说明安装即可(没用过这种方式,因而不确定是否需要添加PATH变量。如果不能识别nvcc,添加PATH变量之后,source ~/.bashrc即可)。

170121更新结束

============================================================================================

posted on 2016-07-09 15:21  darkknightzh  阅读(26369)  评论(0编辑  收藏  举报

导航