LOJ6281 数列分块入门5

LOJ6281 数列分块入门 5

标签

  • 分块入门

前言

简明题意

  • 维护序列,需要支持两种操作
    1. 区间开根号
    2. 区间加

思路

  • 学过线段树的同学肯定都做过用线段树实现区间开根号的题。题目貌似是花神什么什么的
  • 分块做其实跟线段树差不多。注意到2e31的数,开5次根号就变成1了,所以我们直接开一个数组tag[]记录一下每一块还有多少个根号没有开。然后修改操作,对于不在整块的直接开根号,对于在一整块的记录一下tag++。然后查询操作,不整块的直接加,整块的看看是否tag>=5,如果是,那么整块都是1,ans直接加上len。否则对这一块一个个处理就好了。

注意事项

  • 一是一定要注意细节。处理非整块时,记得是用tag[pos[i]],而处理整块时,i就带表块,用tag[i]。
  • 还有一个就是,0开根号后是0,这里要特判一下。总之涉及到开根号就想一下0,要特判。

总结

AC代码

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;

const int maxn = 1e5 + 10;

int n, a[maxn];
int pos[maxn], len, tag[maxn], is_zero[maxn], num[maxn];

void change(int l, int r, int c)
{
	for (int i = l; i <= min(len * pos[l], r); i++)
		a[i] = sqrt(a[i]);

	if (pos[l] != pos[r])
		for (int i = r; i >= len * pos[r] - len + 1; i--)
			a[i] = sqrt(a[i]);

	for (int i = pos[l] + 1; i <= pos[r] - 1; i++)
		tag[i]++;
}

int cal(int l, int r, int c)
{
	int ans = 0;
	for (int i = l; i <= min(len * pos[l], r); i++)
	{
		if (a[i] == 0)
			continue;
		if (tag[pos[i]] >= 5)
			ans += 1;
		else
		{
			int t = a[i];
			for (int j = 1; j <= tag[pos[i]]; j++)
				t = sqrt(t);
			ans += t;
		}
	}
	
	if (pos[l] != pos[r])
		for (int i = r; i >= len * pos[r] - len + 1; i--)
		{
			if (a[i] == 0)
				continue;
			if (tag[pos[i]] >= 5)
				ans += 1;
			else
			{
				int t = a[i];
				for (int j = 1; j <= tag[pos[i]]; j++)
					t = sqrt(t);
				ans += t;
			}
		}

	for (int i = pos[l] + 1; i <= pos[r] - 1; i++)
	{
		if (tag[i] >= 5)
			ans += len - num[i];
		else
		{
			for (int j = i * len - len + 1; j <= i * len; j++)
			{
				int t = a[j];
				for (int k = 1; k <= tag[i]; k++)//开方k次
					t = sqrt(t);
				ans += t;
			}
		}
	}

	return ans;
}

void solve()
{
	scanf("%d", &n);
	len = sqrt(n);
	for (int i = 1; i <= n; i++)
	{
		scanf("%d", &a[i]), pos[i] = (i - 1) / len + 1;
		if (a[i] == 0)
			is_zero[i] = 1, num[pos[i]]++;
	}

	for (int i = 1; i <= n; i++)
	{
		int opt, l, r, c;
		scanf("%d%d%d%d", &opt, &l, &r, &c);
		if (opt == 0)
			change(l, r, c);
		else
			printf("%d\n", cal(l, r, c));
	}
}

int main()
{
	//freopen("Testin.txt", "r", stdin);
	//freopen("Testout.txt", "w", stdout);
	solve();
	return 0;
}
posted @ 2019-08-15 22:58  danzh  阅读(202)  评论(0编辑  收藏  举报