Redis-穿透-布隆过滤器

布隆过滤器:
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中。 和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一个标志,用来判断key是否在集合中。
算法:

1. 首先需要k个hash函数,每个函数可以把key散列成为1个整数

2. 初始化时,需要一个长度为n比特的数组,每个比特位初始化为0

3. 某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的比特位置为1

4. 判断某个key是否在集合时,用k个hash函数计算出k个散列值,并查询数组中对应的比特位,如果所有的比特位都是1,认为在集合中。
优点:不需要存储key,节省空间
缺点:

1. 算法判断key在集合中时,有一定的概率key其实不在集合中

2. 无法删除
典型的应用场景:

某些存储系统的设计中,会存在空查询缺陷:当查询一个不存在的key时,需要访问慢设备,导致效率低下。

比如一个前端页面的缓存系统,可能这样设计:先查询某个页面在本地是否存在,如果存在就直接返回,如果不存在,就从后端获取。但是当频繁从缓存系统查询一个页面时,缓存系统将会频繁请求后端,把压力导入后端。

这是只要增加一个bloom算法的服务,后端插入一个key时,在这个服务中设置一次 需要查询后端时,先判断key在后端是否存在,这样就能避免后端的压力。

posted @ 2021-09-24 09:24  贱贱的小帅哥  阅读(108)  评论(0编辑  收藏  举报