一、法向量定义
定义:如果
,那么向量
叫做平面
的法向量。平面
的法向量共有两大类(从方向上分),无数条。
二、平面法向量的求法
1、内积法
在给定的空间直角坐标系中,设平面
的法向量
=(x,y,1)[或
=(x,1,z)或
=(1,y,z)],在平面
内任找两个不共线的向量
,
。由

,得
·
=0且
·
=0,由此得到关于x,y的方程组,解此方程组即可得到
。
2、
任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一般方程。其法向量
=(A,B,C);若平面与3个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为:
,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。
3、外积法
设
,
为空间中两个不平行的非零向量,其外积
×
为一长度等于|
||
|sinθ,(θ为
两者交角,且0<θ<π,而与
,
, 皆垂直的向量。通常我们采取“右手定则”,也就是右手四指由
的方向转为
的方向时,大拇指所指的方向规定为
×
的方向,
×
=-
×
。
设
=(x1,y1,z1),
=(x2,y2,z2),则
×
=

(注:1、二阶行列式:
;2、适合右手定则。)

Code
public double[] GetTriangleFunction(ESRI.ArcGIS.Geometry.IPoint point1, ESRI.ArcGIS.Geometry.IPoint point2, ESRI.ArcGIS.Geometry.IPoint point3)

{
try

{
double a = 0, b = 0,c=0; //方程参数
double x1 = 0, x2 = 0, x3 = 0, y1 = 0, y2 = 0, y3 = 0, z1 = 0, z2 = 0, z3 = 0; //各点坐标值
double[] returnValue = new double[3];

x1 = point1.X * 1000;
y1 = point1.Y * 1000;
z1 = point1.Z * 1000;

x2 = point2.X * 1000;
y2 = point2.Y * 1000;
z2 = point2.Z * 1000;

x3 = point3.X * 1000;
y3 = point3.Y * 1000;
z3 = point3.Z * 1000;

//向量I1
double[] I1 = new double[3];
I1[0] = x2 - x1;
I1[1] = y2 - y1;
I1[2] = z2 - z1;
//向量I2
double[] I2 = new double[3];
I2[0] = x3 - x1;
I2[1] = y3 - y1;
I2[2] = z3 - z1;

double X1 = I1[0];
double Y1 = I1[1];
double Z1 = I1[2];
double X2 = I2[0];
double Y2 = I2[1];
double Z2 = I2[2];

a = Y1 * Z2 - Y2 * Z1;
b = X2 * Z1 - X1 * Z2;
c = X1 * Y2 - X2 * Y1;


returnValue[0] = a;
returnValue[1] = b;
returnValue[2] = c;

return returnValue;
}
catch (Exception e)

{
throw e;
}

}