测试5T2-手套

问题描述
你现在有N对手套,但是你不小心把它们弄乱了,需要把它们整理一下。N对手套被一字排开,每只手套都有一个颜色,被记为0~N-1,你打算通过交换把每对手套都排在一起。由于手套比较多,你每次只能交换相邻两个手套。请你计算最少要交换几次才能把手套排整齐。
输入格式
输入第一行一个N,表示手套对数。
第二行有2N个整数,描述了手套的颜色。每个数都在0~N-1之间,且每个数字都会出现恰好两次。
输出格式
一行,包含一个数,表示最少交换次数。
样例输入
2
0 1 0 1
样例输出
1
数据范围
30%的数据N≤9;
60%的数据N≤1000;
100%的数据N≤200,000。

这道题题目看错,吐血~~我以为是求多少次把手套从大到小排好序~~

这题就是先考虑一下贪心做法——每次找到一对手套的前半只,把后半只换到它后面,不会对原序列其他数产生影响

这样我们可以O(n)确定一下每只手套的最终位置(全部靠前放,就是把后面那只放到前面那只的后面)

然后其实这样的操作的总数就是求逆序对数

所以重新编号+逆序对就可以A啦!

命题:上述操作的次数等于重新编号后数组的逆序对个数

引理:先对哪对手套进行操作并不影响答案(口糊见上)

证明:我们先把剩余数组中重新编号最小那对手套换完。所以我们只需要交换那后半只手套到第二的位子就可以了

要交换的次数是原序列中编号<后半只手套 且 重新编号后编号>这对手套的

得证啦!

 

#include<iostream>
#include<algorithm>
#include<cstdio>
#define lowbit(x) x&(-x)
#define N 400005
using namespace std;
#define ll long long
ll ans,n,i,bianhao[N],b[N],x,tree[N];
bool flag[N];
void update(ll u)
{
    for(ll j=u;j<=n;tree[j]++,j+=lowbit(j));
}
ll getsum(ll u)
{
    ll tot=0;
    for(ll j=u;j;tot+=tree[j],j-=lowbit(j));
    return tot;
}
int main()
{
    ios::sync_with_stdio(false); 
    cin>>n;
    n*=2;
    ll q=0;
    for(ll i=1;i<=n;i++)
    {
        cin>>x;
        if(!flag[x])
        {
            flag[x]=1;
            bianhao[x]=++q;
        }
        b[i]=bianhao[x];
    }
    for(ll i=n;i>=1;i--)
    {
        ans+=getsum(b[i]-1);
        update(b[i]);    
    }
    cout<<ans<<endl;
    return 0;
}

 

posted @ 2017-06-17 14:31  dancer16  阅读(291)  评论(0编辑  收藏  举报
描述