docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].
docker使用--gpus all报错:
官方安装指导:https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].
在网上查询了很多文章,总结起来就是要安装nvidia-container-toolkit
或nvidia-container-runtime
(包含nvidia-container-toolkit)
但是尴尬的是怎么都安装不了nvidia-container-toolkit,一直显示 ** E: Unable to locate package nvidia-container-toolkit**
网上的解决方案:
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
这个大家应该比较熟,老版本的docker安装都会使用这个进行添加GPG keycurl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo
或者curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
上面的方法我都进行了尝试,这里要注意第三步,centos和Ubuntu命令不一样!
補充:華爲雲的centos環境建議直接安裝
nvidia-container-runtime
,我在使用的過程中安裝nvidia-container-toolkit
不知道爲什麼在重啓後沒有生效
使用上面的命令我还是安装不了,最后解决的过程记录如下:
- 更改系统源为阿里的镜像源
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
正常会显示OKcurl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
我的系统是Ubuntu18.04sudo apt-get update
这一步要保证没得问题,我的显示有几个源重复配置,然后我就将其(sudo vim nvidia-docker.list
)注释掉sudo apt-get install nvidia-container-toolkit
sudo systemctl restart docker
总结
实现路径是一样的,就是更新源那么简单吗?实际上公司的网络非常差很不稳定,导致很多步骤不能正常执行,如sudo apt-get update
一会可以正常执行,一会报错。
安装后报错:
/sbin/ldconfig.real: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn.so.8 is not a symbolic link
/sbin/ldconfig.real: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 is not a symbolic link
/sbin/ldconfig.real: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link
/sbin/ldconfig.real: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 is not a symbolic link
/sbin/ldconfig.real: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 is not a symbolic link
/sbin/ldconfig.real: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 is not a symbolic link
/sbin/ldconfig.real: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 is not a symbolic link
解决方案
$ sudo ln -sf /usr/local/cuda/targets/x86_64-linux/lib/libcudnn.so.8.4.0 /usr/local/cuda/targets/x86_64-linux/lib/libcudnn.so.8
$ sudo ln -sf /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.4.0 /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
$ sudo ln -sf /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.4.0 /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
$ sudo ln -sf /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.4.0 /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
$ sudo ln -sf /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.4.0 /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
$ sudo ln -sf /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.4.0 /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
$ sudo ln -sf /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.4.0 /usr/local/cuda/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
完成后记得重启docker
清澈的爱,只为中国