插入原理参考《算法导论》,删除原理请参考以下链接:https://www.youtube.com/watch?v=fKubKYzwDl0

代码实现如下

声明一个B树类,随机生成对应关键字的数据data

template <int t>
class BTree {
public:
    typedef struct _BNode{
        _BNode(bool _leaf) :n(0), leaf(_leaf), p(NULL) {
            for (int i = 0; i < 2 * t; i++)
                c[i] = NULL;
        }
        std::pair<int, int> e[2 * t - 1];//e.first是关键字,e.second是数据
        _BNode *c[2 * t];//2*t个子节点
        bool leaf;//true代表叶子(没有子结点,本身就足以容纳关键数据),false代表结点
        int n;//代表关键字个数
        _BNode *p;//父结点
    }BNode, *pBNode;
    BTree(int n) {
        seed = Seed(log2(n), 4);
        root = new BNode(true);
    }
    void Insert(BNode *x, int k, int d);
    std::pair<BNode *, int> Search(BNode *x, int k);
    std::pair<BNode *, int> Prev(int k);
    std::pair<BNode *, int> Next(int k);
    void Delete(BNode *x, int k);
    void Empty();
    void Print(BNode *x);//顺序输出
    void Print_tree(BNode *x);//层次输出
    int Hash(int k);
    BNode *Root() {
        return root;
    }
    ~BTree() {
        Empty();
    }
private:
    void Split_child(BNode *x, int i, BNode *y);
    void Insert_directly(BNode *x, int k, int d);
    int Seed(int n, int iCheck);
    int _Hash(int k, int w, int p);
    int seed;
    BNode *root;
};

对应的成员函数实现

Insert函数,原理来自《算法导论》

template <int t>
void BTree<t>::Insert(typename BTree<t>::BNode *x, int k, int d) {
    BNode *r = root, *s;
    if (r->n == 2 * t - 1) {
        s = new BNode(false);
        root = s;
        s->c[0] = r;
        Split_child(s, 0, r);
        Insert_directly(s, k, d);
    }
    else
        Insert_directly(r, k, d);
}

两个辅助函数

template<int t>
void BTree<t>::Split_child(typename BTree<t>::BNode *x, int i, typename BTree<t>::BNode *y) {//分裂y,并在x->c[i]处插入y结点
    int j;
    BNode *z = new BNode(y->leaf);
    //z结点,是x结点的右子结点
    z->n = t - 1;
    for (j = 0; j < t - 1; j++)
        z->e[j] = y->e[j + t];//复制关键字
    if (!y->leaf) //y是结点
        for (j = 0; j < t; j++) {
            z->c[j] = y->c[j + t];//复制子结点
            z->c[j]->p = z;
        }
    //y结点,是x结点的左子结点
    y->n = t - 1;
    //在x结点中增加一个子结点z,保证x->n<=2*t-1,并且x结点的i处是y
    for (j = x->n; j >= i + 1; j--)
        x->c[j + 1] = x->c[j];
    x->c[i + 1] = z;
    for (j = x->n - 1; j >= i; j--) 
        x->e[j + 1] = x->e[j];
    x->e[i] = y->e[t - 1];
    x->n++;    
    //更新父结点信息
    z->p = y->p = x;
}

template <int t>
void BTree<t>::Insert_directly(typename BTree<t>::BNode *x, int k, int d) {
    int i = x->n - 1;
    if (x->leaf) {//同一高度插入关键字k
        while (i >= 0 && k < x->e[i].first) {//调用此函数前,保证了x->n<2*t-1
            x->e[i + 1] = x->e[i];
            i--;
        }
        x->e[i + 1] = std::make_pair(k, d);
        x->n++;
    }
    else {//结点满了
        while (i >= 0 && k < x->e[i].first)
            i--;
        i = i + 1;
        if (x->c[i]->n == 2 * t - 1) {
            Split_child(x, i, x->c[i]);
            if (k > x->e[i].first)
                i++;
        }
        Insert_directly(x->c[i], k, d);
    }
}

Search函数,查找某个关键字

template <int t>
typename std::pair<typename BTree<t>::BNode *, int> BTree<t>::Search(typename BTree<t>::BNode *x, int k) {//返回<结点指针,关键字索引>
    int i = 0;
    while (i<x->n && k>x->e[i].first)
        i++;
    if (i < x->n && k == x->e[i].first)
        return std::make_pair(x, i);
    if (x->leaf) //叶子
        return std::make_pair<BNode *,int>(NULL, -1);
    else return this->Search(x->c[i], k);
}

Next和Prev函数,后继和前驱

template <int t>
typename std::pair<typename BTree<t>::BNode *, int> BTree<t>::Prev(int k) {//返回<结点指针,关键字索引>
    typename std::pair<BNode *, int> p = this->Search(root, k);
    BNode *x = p.first, *y;
    int i = p.second;
    if (x == NULL)
        return p;
    if (x->c[i]) {//左子结点存在,优先查找
        x = x->c[i];
        while (!x->leaf) x = x->c[x->n];
        i = x->n;
    }
    else if (i > 0) {//结点内还有比自己小的,次优先查找
    
    }
    else {//父结点查找
        while (x->p) {
            y = x;
            x = x->p;
            for (i = 0; i < x->n + 1; i++)
                if (x->c[i] == y && i != 0)
                    return std::make_pair(x, i - 1);
        }
        if (x == p.first || i == x->n + 1)
            return std::make_pair<BNode *, int>(NULL, -1);
    }
    return std::make_pair(x, i - 1);
}

template <int t>
typename std::pair<typename BTree<t>::BNode *, int> BTree<t>::Next(int k) {//返回<结点指针,关键字索引>
    typename std::pair<BNode *, int> p = this->Search(root, k);
    BNode *x = p.first, *y;
    int i = p.second;
    if (x== NULL)
        return p;
    if (x->c[i + 1]) {//右子结点存在,优先查找
        x = x->c[i + 1];
        while (!x->leaf) x = x->c[0];
        i = 0;
    }
    else if (i < x->n - 1) //结点内还有比自己大的,次优先查找
        i++;
    else {//父结点查找
        while (x->p) {
            y = x;
            x = x->p;
            for (i = 0; i < x->n + 1; i++)
                if (x->c[i] == y && i != x->n)
                    return std::make_pair(x, i);
        }
        if (x == p.first || i == x->n + 1)
            return std::make_pair<BNode *, int>(NULL, -1);
    }
    return std::make_pair(x, i);
}

Delete删除函数,原理参考链接视频

template <int t>
void BTree<t>::Delete(typename BTree<t>::BNode *x, int k) {
    typename std::pair<BNode *, int> p = this->Search(x, k);
    BNode *lSib, *rSib;
    int i = p.second, j;
    x = p.first;//x含有目标关键字k
    if (x == NULL) return;
    if (x->leaf) {//x是叶子,那么左右兄弟必然也是叶子
        //定位左右兄弟lSib, rSib
        if (x->p) {
            for (j = 0; j < x->p->n + 1; j++)
                if (x->p->c[j] == x) 
                    break;
            lSib = (j - 1 > -1) ? x->p->c[j - 1] : NULL;
            rSib = (j + 1 < x->p->n + 1) ? x->p->c[j + 1] : NULL;
        }
        else
            lSib = rSib = NULL;
        if (x == root && x->n == 1) {
            delete x;
            root = NULL;
        }
        else if (x->n >= t) {//case 1,x有至少t个关键字,则直接删除
            for (j = i; j < x->n - 1; j++)
                x->e[j] = x->e[j + 1];
            x->n--;
        }
        else if (x->n == t - 1) {
            //case 2a,x仅有t-1个关键字,并且lSib或rSib兄弟右至少t个关键字
            if (rSib && rSib->n >= t) {//是右兄弟存在,父结点中对应的关键字是x->p->e[j]->first
                x->e[x->n] = x->p->e[j];//父结点中x->p->e[j]下降到x
                x->p->e[j] = rSib->e[0];//右兄弟rSib->e[0]上升到x->p
                //x->p没有变化,无需调整,所有变化不影响父结点
                x->n++;//x增加一个关键字
                for (i = 0; i < rSib->n - 1; i++)
                    rSib->e[i] = rSib->e[i + 1];//删除移走的关键字rSib->e[0]
                rSib->n--;
            }
            else if (lSib && lSib->n >= t) {//是左兄弟存在,父结点中对应的关键字是x->p->e[j-1]->first
                for (i = 0; i < x->n; i++)
                    x->e[i + 1] = x->e[i];
                x->e[0] = x->p->e[j - 1];//父结点x->p->e[j-1]下降到x
                x->p->e[j - 1] = lSib->e[lSib->n - 1];//左兄弟lSib->e[lSib->n - 1]上升到x->p
                //x->p同上
                x->n++;
                lSib->n--;
            }
            else {//case 2b,此时必定是左或右兄弟都仅有t-1个关键字
                if (rSib) {//rSib合并到x
                    x->e[x->n] = x->p->e[j];//父结点中关键字x->p->e[j]下降到x
                    for (i = 0; i < rSib->n; i++)
                        x->e[x->n + 1 + i] = rSib->e[i];
                    //调整x->p,保证x->p->c[j]是x
                    for (i = j; i < x->p->n - 1; i++)
                        x->p->e[i] = x->p->e[i + 1];
                    for (i = j; i < x->p->n; i++)
                        x->p->c[i] = x->p->c[i + 1];
                    x->p->c[j] = x;
                    x->p->n--;
                    x->n = x->n + 1 + rSib->n;
                    delete rSib;
                }
                else if (lSib){//x合并到lSib
                    lSib->e[lSib->n] = x->p->e[j - 1];//父结点中关键字x->p->e[j-1]下降到lSib
                    for (i = 0; i < x->n; i++)
                        lSib->e[lSib->n + 1 + i] = x->e[i];
                    //调整x->p,保证x->p->c[j-1]是lSib
                    for (i = j - 1; i < x->p->n - 1; i++)
                        x->p->e[i] = x->p->e[i + 1];
                    for (i = j - 1; i < x->p->n; i++)
                        x->p->c[i] = x->p->c[i + 1];
                    x->p->c[j - 1] = lSib;
                    x->p->n--;
                    lSib->n = lSib->n + 1 + x->n;
                    delete x;
                    x = lSib;
                }
                if (x->p->n == 0) {//更新父结点
                    BNode *readyToDel = x->p;
                    if (x->p == root)
                        root = x;
                    if (x->p->p) {
                        for (i = 0; i < x->p->p->n + 1; i++)
                            if (x->p->p->c[i] == x->p)
                                break;
                        x->p->p->c[i] = x;
                    }
                    x->p = x->p->p;
                    delete readyToDel;
                }
            }
            this->Delete(x, k);//递归删除
        }
    }
    else {//x是内结点
        lSib = x->c[i];//左子结点
        rSib = x->c[i + 1];//右子结点
        if (lSib->n >= t) {//case 3a,左子结点至少有t个关键字
            p = this->Prev(k);//前驱
            x->e[i] = p.first->e[p.second];//替换掉关键字k
            this->Delete(p.first, p.first->e[p.second].first);//递归删除前驱值
        }
        else if (rSib->n >= t) {//case 3b,右子结点至少有t个关键字
            p = this->Next(k);
            x->e[i] = p.first->e[p.second];
            this->Delete(p.first, p.first->e[p.second].first);
        }
        else {//case 3c,此时必定是左或右结点仅有t-1个关键字,直接合并两个结点
            //合并到lSib
            lSib->e[lSib->n] = x->e[i];//关键字k下降到lSib
            for (j = 0; j < rSib->n; j++)
                lSib->e[lSib->n + 1 + j] = rSib->e[j];//rSib合并到lSib
            if (!lSib->leaf) {
                for (j = 0; j < rSib->n + 1; j++) {
                    lSib->c[lSib->n + 1 + j] = rSib->c[j];
                    //调整父结点
                    rSib->c[j]->p = lSib;
                }
            }
            lSib->n = lSib->n + 1 + rSib->n;
            //调整x结点,保证x->c[i]是lSib
            for (j = i; j < x->n - 1; j++)
                x->e[j] = x->e[j + 1];
            for (j = i; j < x->n; j++)
                x->c[j] = x->c[j + 1];
            x->c[i] = lSib;
            x->n--;
            delete rSib;
            if (x->n == 0) {//更新父结点
                if (x == root)
                    root = lSib;
                if (x->p) {//替换x->p-c[?]的子结点
                    for (j = 0; j < x->p->n + 1; j++)
                        if (x->p->c[j] == x) 
                            break;
                    x->p->c[j] = lSib;
                }
                lSib->p = x->p;
                delete x;
            }
            this->Delete(lSib, k);
        }
    }
}

两个打印函数

void BTree<t>::Print(typename BTree<t>::BNode *x) {
    if (x == NULL) return;
    for (int i = 0; i < x->n; i++){
        if (!x->leaf)
            Print(x->c[i]);
        printf("%c-%d%-02s", x->e[i].first, x->e[i].second, " ");
    }
    if (!x->leaf)
        Print(x->c[x->n]);
}

template <int t>
void BTree<t>::Print_tree(typename BTree<t>::BNode *x) {
    if (x == NULL) return;
    for (int i = 0; i < x->n; i++)
        printf("%c-%d%-02s", x->e[i].first, x->e[i].second, " ");
    if (x->p) 
        printf("from %c\n", x->p->e[0].first);
    else 
        printf("it is root\n");
    if (!x->leaf) //结点
        for (int i = 0; i <= x->n; i++)
            Print_tree(x->c[i]);
}

数据随机生成函数,采用乘法随机,原理参考之前我发的随笔。

template <int t>
int BTree<t>::Hash(int k) {
    return _Hash(k, 32, seed);
}
template <int t>
int BTree<t>::Seed(int n, int iCheck) {
    int iStart = n / iCheck, prime = (iStart == 1) ? 2 : iStart;
    assert(iCheck >= 0 && iCheck <= 8);
    //odd起始要跳过已经判断了的奇数
    for (int j = 0, odd = (iStart % 2 == 0) ? iStart / 2 : (iStart - 1) / 2 + 1;
        j < 8 - iCheck; odd++) {
        //生成一个素数
        bool fPrime = true;
        for (int k = 2; k <= sqrt(prime); k++)
            if (prime % k == 0) {
                fPrime = false;
                break;
            }
        if (fPrime) //记录素数
            j++;
        prime = odd * 2 + 1;//待判断的奇数
    }
    return prime - 2;
}

template <int t>
int BTree<t>::_Hash(int k, int w, int p) {
    __int64 s = (sqrt(5) - 1) / 2 * pow(2, w);
    __int64 r0 = s * k % (__int64)pow(2, w);
    return r0 / pow(2, w - p);//高p位有效位
}

empty函数

template <int t>
void BTree<t>::Empty(){
    while (root && root->n != 0) {
        printf("%c deleted\n", root->e[0].first);
        this->Delete(root, root->e[0].first);
        Print(root);
        printf("\n");
    }
}

数据测试

  int key[] = { 'F','S','Q','K','C','L','H','T','V','W','M','R','N','P','A','B','X','Y','D','Z','E'};

Main函数

int main()
{
    //while (true) {//用于测试是否存在内存泄露
        int key[] = { 'F','S','Q','K','C','L','H','T','V','W','M','R','N','P','A','B','X','Y','D','Z','E'};
        BTree<2> btree(LENGTH(key));
        for (int i = 0; i < LENGTH(key); i++) 
            btree.Insert(btree.Root(), key[i], btree.Hash(key[i]));
        btree.Print_tree(btree.Root());
        printf("\n");
        btree.Print(btree.Root());
        printf("\n");
        std::pair<BTree<2>::BNode *, int> next, prev;
        printf("Next/Next函数测试\n");
        for (int i = 0; i < LENGTH(key); i++) {
            next = btree.Next(key[i]);
            prev = btree.Prev(key[i]);
            printf("%c's next is %c, prev is %c\n", key[i],
                next.first ? next.first->e[next.second].first : '.',
                prev.first ? prev.first->e[prev.second].first : '.');
        }
        /*
        printf("Delete函数测试\n");
        for (int i = 0; i < LENGTH(key); i++) {
            printf("i=%d, delete %c\n", i, key[i]);
            btree.Delete(btree.Root(), key[i]);
            btree.Print(btree.Root());
            printf("\n");
        }
        */
        printf("对象释放....\n");
    //}
    return 0;
}

输出结果

对应正确结果图

 

所有代码均经过测试,结果正确!!!

posted on 2018-06-27 09:39  dalgleish  阅读(237)  评论(0编辑  收藏  举报