Yolo训练自定义目标检测

Yolo训练自定义目标检测

参考darknet:https://pjreddie.com/darknet/yolo/

1. 下载darknet

https://github.com/pjreddie/darknet 下载zip
(注意:git clone 之后‘make’有“Counldn't open coco.name”的error,搜了一下,直接下载zip可以解决)

2. make

3. 下载pretrained weight

4. 运行单图片检测

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg 能运行说明检测没有问题

5. 准备数据集

通过labelImg工具标注。选用window+conda安装,步骤如下:

git clone https://gitee.com/dalaska/labelImg.git

cd 到目录

conda install pyqt=5

这步有可能应为网络原因连不上,可以试下梯子

pyrcc5 -o libs/resources.py resources.qrc
python labelImg.py

label
套用voc数据集的格式,把自定义的 label txt 格式。每个图片对应一个txt

<object-class> <x> <y> <width> <height>

自定义数据放在这里voc_label.py 工具将xml转为txt

6. 训练

数据集路径在 .data 文件中修改

1 classes= 20
2 train  = <path-to-voc>/train.txt
3 valid  = <path-to-voc>2007_test.txt
4 names = data/voc.names
5 backup = backu

修改·cfg最后一层layer filter。
yolov3:filters=(classes + 5)x3

./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74

7. .weight转.onnx

posted @ 2020-05-21 08:32  dalaska  阅读(678)  评论(0编辑  收藏  举报