P1002 A+B for Polynomials (25分)
This time, you are supposed to find A+B where A and B are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:
K N1 aN1 N2 aN2 ... NK aNK
where K is the number of nonzero terms in the polynomial, Ni and aNi (,) are the exponents and coefficients, respectively. It is given that 1,0.
Output Specification:
For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Input:
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output:
3 2 1.5 1 2.9 0 3.2
0是零多项式,在题中将之归于“0项”多项式。当然了,实际是没有0项多项式的,只有零多项式,但是非要输出个结果,0还是合理的
我用了另一种思路,用数组模仿链表的实现。将A、B两多项式由次数从高到低依次计算,存入新数组。开个1000 的数组实在是浪费空间
疑问:
。
#include <math.h> #include <stdio.h> #include <stdlib.h> typedef struct Poly { double coef; int exp; } Poly[20]; int main(void) { int Ka, Kb, Ksum = 0; Poly A, B, Sum; scanf("%d", &Ka); for (int i = 0; i < Ka; ++i) { scanf("%d %lf", &A[i].exp, &A[i].coef); } scanf("%d", &Kb); for (int i = 0; i < Kb; ++i) { scanf("%d %lf", &B[i].exp, &B[i].coef); } int i = 0, j = 0; while (i < Ka || j < Kb) { //类似于链表的多项式相加 if (i == Ka || (j < Kb && A[i].exp < B[j].exp)) { //多项式B长 或者 多项式B指数在A中不存在 Sum[Ksum].exp = B[j].exp; Sum[Ksum].coef = B[j++].coef; } else if (j == Kb || (i < Ka && A[i].exp > B[j].exp)) { //多项式A长 或者 多项式A指数在B中不存在 Sum[Ksum].exp = A[i].exp; Sum[Ksum].coef = A[i++].coef; } else { // Sum[Ksum].exp = A[i].exp; Sum[Ksum].coef = A[i++].coef + B[j++].coef; } if (fabs(Sum[Ksum].coef) >= 0.05) { //小于这个值的被舍去了 Ksum++; } } printf("%d", Ksum); for (int i = 0; i < Ksum; i++) { printf(" %d %.1lf", Sum[i].exp, Sum[i].coef); } return 0; }
C++版本:
用了Map和vector,MAP, 将整型的exp最为Map的关键字,再用二维的vector存储结果
#include <iostream> #include <map> #include <vector> using namespace std; int main(void) { map<int, float> poly1; int K, exp; float cof; scanf("%d", &K); for (int i = 0; i < K; ++i) { scanf("%d%f", &exp, &cof); poly1[exp] += cof; } scanf("%d", &K); for (int i = 0; i < K; ++i) { scanf("%d%f", &exp, &cof); poly1[exp] += cof; } vector<pair<int, float>> res; for (map<int, float>::reverse_iterator it = poly1.rbegin(); it != poly1.rend(); it++) { if (it->second != 0) // 两个系数和为0的得过滤掉 { res.push_back(make_pair(it->first, it->second)); } } printf("%lu", res.size()); for (int i = 0; i < res.size(); ++i) { printf(" %d %.1f", res[i].first, res[i].second); } return 0; }
PAT不易,诸君共勉!