P10891089 狼人杀-简单版
以下文字摘自《灵机一动·好玩的数学》:“狼人杀”游戏分为狼人、好人两大阵营。在一局“狼人杀”游戏中,1 号玩家说:“2 号是狼人”,2 号玩家说:“3 号是好人”,3 号玩家说:“4 号是狼人”,4 号玩家说:“5 号是好人”,5 号玩家说:“4 号是好人”。已知这 5 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。扮演狼人角色的是哪两号玩家?
本题是这个问题的升级版:已知 N 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。要求你找出扮演狼人角色的是哪几号玩家?
输入格式:
输入在第一行中给出一个正整数 N(5)。随后 N 行,第 i 行给出第 i 号玩家说的话(1),即一个玩家编号,用正号表示好人,负号表示狼人。
输出格式:
如果有解,在一行中按递增顺序输出 2 个狼人的编号,其间以空格分隔,行首尾不得有多余空格。如果解不唯一,则输出最小序列解 —— 即对于两个序列 [ 和 [,若存在 0 使得 [ (i≤k),且 [,则称序列 A 小于序列 B。若无解则输出 No Solution
。
输入样例 1:
5
-2
+3
-4
+5
+4
输出样例 1:
1 4
输入样例 2:
6
+6
+3
+1
-5
-2
+4
输出样例 2(解不唯一):
1 5
输入样例 3:
5
-2
-3
-4
-5
-1
输出样例 3:
No Solution
每个人说的数字保存在v数组中,i从1~n、j从i+1~n遍历,分别假设i和j是狼人,a数组表示该人是狼人还是好人,等于1表示是好人,等于-1表示是狼人。k从1~n分别判断k所说的话是真是假,k说的话和真实情况不同(即v[k] * a[abs(v[k])] < 0)则表示k在说谎,则将k放在lie数组中;遍历完成后判断lie数组,如果说谎人数等于2并且这两个说谎的人一个是好人一个是狼人(即a[lie[0]] + a[lie[1]] == 0)表示满足题意,此时输出i和j并return,否则最后的时候输出No Solution~
#include <cmath> #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<int> arr(n + 1); for (int i = 0; i < n; i++) { cin >> arr[i]; } for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { vector<int> lie, identity(n + 1, 1); identity[i] = identity[j] = -1; for (int k = 0; k < n; k++) { if (arr[k] * identity[abs(arr[k]) - 1] < 0) { lie.push_back(k); } } if (lie.size() == 2 && identity[lie[0]] + identity[lie[1]] == 0) { cout << i + 1 << " " << j + 1; return 0; } } } cout << "No Solution"; return 0; }
PAT不易,诸君共勉!