Flink学习笔记:Connectors之kafka

本文为《Flink大数据项目实战》学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程:

Flink大数据项目实战:http://t.cn/EJtKhaz

1. Kafka-connector概述及FlinkKafkaConsumer(kafka source)

1.1回顾kafka

1.最初由Linkedin 开发的分布式消息中间件现已成为Apache顶级项目

 

2.面向大数据

3.基本概念:

1.Broker

2.Topic

3.Partition

4.Producer

5.Consumer

6.Consumer Group

7.Offset( 生产offset , 消费offset , offset lag)

1.2引入依赖

Flink读取kafka数据需要通过maven引入依赖:

<dependency>

    <groupId>org.apache.flink</groupId>

    <artifactId>flink-connector-kafka-0.8_2.11</artifactId>

    <version>1.6.2</version>

</dependency>

 

1.3Flink KafkaConsumer

Flink KafkaConsumer目前已经出现了4个大的版本:FlinkKafkaConsumer08、FlinkKafkaConsumer09、FlinkKafkaConsumer10和FlinkKafkaConsumer11.

 FlinkKafkaConsumer08和FlinkKafkaConsumer09都继承FlinkKafkaConsumerBase,FlinkKafkaConsumerBase内部实现了CheckpointFunction接口和继承RichParallelSourceFunction类。

 FlinkKafkaConsumer11继承FlinkKafkaConsumer10,FlinkKafkaConsumer10继承FlinkKafkaConsumer09。FlinkKafkaConsumer081和FlinkKafkaConsumer082继承FlinkKafkaConsumer08。

 

1.4 FlinkKafkaConsumer010

FlinkKafkaConsumer010(String topic, DeserializationSchema<T> valueDeserializer, Properties props)

FlinkKafkaConsumer010(String topic, KeyedDeserializationSchema<T> deserializer, Properties props)

FlinkKafkaConsumer010(List<String> topics, DeserializationSchema<T> deserializer, Properties props)

FlinkKafkaConsumer010(List<String> topics, KeyedDeserializationSchema<T> deserializer, Properties props)

FlinkKafkaConsumer010(Pattern subscriptionPattern, KeyedDeserializationSchema<T> deserializer, Properties props)

 

三个构造参数:

1.要消费的topic(topic name / topic names/正表达式)

2.DeserializationSchema / KeyedDeserializationSchema(反序列化Kafka中的数据)

3.Kafka consumer的属性,其中三个属性必须提供:

a)bootstrap.servers (逗号分隔的Kafka broker列表)

b)zookeeper.connect (逗号分隔的Zookeeper server列表) (仅Kafka 0.8需要)

c)group.id(consumer group id)

1.5反序列化Schema类型

作用:对kafka里获取的二进制数据进行反序列化

FlinkKafkaConsumer需要知道如何将Kafka中的二进制数据转换成Java/Scala对象,DeserializationSchema定义了该转换模式,通过T deserialize(byte[] message)

FlinkKafkaConsumer从kafka获取的每条消息都会通过DeserializationSchema的T deserialize(byte[] message)反序列化处理

反序列化Schema类型(接口):

1.DeserializationSchema(只反序列化value)

2.KeyedDeserializationSchema

1.6 DeserializationSchema接口

 

1.7 KeyedDeserializationSchema接口

 

1.8常见反序列化Schema

SimpleStringSchema

JSONDeserializationSchema / JSONKeyValueDeserializationSchema

TypeInformationSerializationSchema/ TypeInformationKeyValueSerializationSchema(适合读写均是flink的场景)

AvroDeserializationSchema

1.9 FlinkKafkaConsumer010最简样版代码

 

1.10 FlinkKafkaConsumer消费模式设置(影响从哪里开始消费)

设置FlinkKafkaConsumer消费模式示例代码如下所示:

 

不同消费模式的解释如下所示:

  

注意1:kafka 0.8版本, consumer提交偏移量到zookeeper,后续版本提交到kafka(一个特殊的topic: __consumer_offsets)

注意2:当作业从故障中恢复或者从savepoint还原时,上述设置的消费策略将不能决定开始消费的位置,真正的起始位置由保存点或检查点中存储的偏移量。

1.11理解FlinkKafkaSource的容错性(影响消费起始位置)

 

如果Flink启用了检查点,Flink Kafka Consumer将会周期性的checkpoint其Kafka偏移量到快照。

通过实现CheckpointedFunction。

ListState<Tuple2<KafkaTopicPartition, Long>> 。

保证仅一次消费。 

如果作业失败,Flink将流程序恢复到最新检查点的状态,并从检查点中存储的偏移量开始重新消费Kafka中的记录。(此时前面所讲的消费策略就不能决定消费起始位置了,因为出故障了)。

1.12 Flink Kafka Consumer Offset提交行为

Flink Kafka Consumer Offset提交行为分为以下两种:

 

1.13不同情况下消费起始位置的分析

 

1.14动态Partition discovery

Flink Kafka Consumer支持动态发现Kafka分区,且能保证exactly-once。 

默认禁止动态发现分区,把flink.partition-discovery.interval-millis设置大于0即可启用:

properties.setProperty(“flink.partition-discovery.interval-millis”, “30000”)

1.15动态Topic discovery

Flink Kafka Consumer支持动态发现Kafka Topic,仅限通过正则表达式指定topic的方式。

默认禁止动态发现分区,把flink.partition-discovery.interval-millis设置大于0即可启用。

 

2. FlinkKafkaProducer(kafka sink)

2.1 Flink KafkaProducer

FlinkKafkaProducerBase实现CheckpointFunction接口实现容错,同时也继承了RichSinkFunction类。FinkKafkaProducer08继承FlinkKafkaProducerBase。FinkKafkaProducer09继承FlinkKafkaProducerBase,FinkKafkaProducer10继承FinkKafkaProducer09.

 

FinkKafkaProducer011已经支持事务,它继承TowPhaseCommitSinkFunction。TowPhaseCommitSinkFunction继承RichSinkFunction。

 

2.2FlinkKafkaProducer

FlinkKafkaProducer包含了如下不同的构造方法:

FlinkKafkaProducer010(String brokerList, String topicId, SerializationSchema<T> serializationSchema)

FlinkKafkaProducer010(String topicId, SerializationSchema<T> serializationSchema, Properties producerConfig)

FlinkKafkaProducer010(String brokerList, String topicId, KeyedSerializationSchema<T> serializationSchema)

FlinkKafkaProducer010(String topicId, KeyedSerializationSchema<T> serializationSchema, Properties producerConfig)

FlinkKafkaProducer010(String topicId,SerializationSchema<T> serializationSchema,Properties producerConfig,@Nullable FlinkKafkaPartitioner<T> customPartitioner)

FlinkKafkaProducer010(String topicId,KeyedSerializationSchema<T> serializationSchema,Properties producerConfig,@Nullable FlinkKafkaPartitioner<T> customPartitioner)

Value序列化接口SerializationSchema,如果实现这个接口就需要实现如下方法:

byte[] serialize(T element);

如果key也需要实现序列化,则需要实现序列化接口KeyedSerializationSchema,然后重新如下方法:

byte[] serializeKey(T element);

byte[] serializeValue(T element);

String getTargetTopic(T element) 

2.3常见序列化Schema

常见的序列化Schema:

1.TypeInformationSerializationSchema/ TypeInformationKeyValueSerializationSchema(适合读写均是flink的场景)

2.SimpleStringSchema

2.4 producerConfig

FlinkKafkaProducer内部KafkaProducer的配置,具体配置可以参考官网地址:

https://kafka.apache.org/documentation.html

2.5 FlinkKafkaPartitioner

默认使用FlinkFixedPartitioner,即每个subtask的数据写到同一个Kafka partition中。

自定义分区器:继承FlinkKafkaPartitioner(partitioner的状态在job失败时会丢失,不会checkpoint)。

2.6 FlinkKafkaProducer容错

 

 

 

 

posted @ 2019-04-09 14:44  大数据研习社  阅读(6483)  评论(0编辑  收藏  举报