09 2010 档案
摘要:之前的文章中介绍了如何基于Mongodb进行关系型数据的分布式存储,有了存储就会牵扯到查询。虽然用普通的方式也可以进行查询,但今天要介绍的是如何使用MONGODB中提供的MapReduce功能进行查询。有关MongoDb的MapReduce之前我写过一篇文章 Mongodb Mapreduce 初窥,今天介绍如何基于sharding机制进行mapreduce查询。在MongoDB的官方文档中,这么一句话:
阅读全文
摘要:在之前的文章中介绍了如何对关系型数据数据通过auto-sharding进行分布式数据存储,今天介绍如何对物理文件(小文件,基本小于100K)进行分布式存储。接着看一下要配置的测试环境(与前一篇中类似):模拟2个shard服务和一个config服务, 均运行在10.0.4.85机器上,只是端口不同:
阅读全文
摘要: 注:本文是研究Mongodb分布式数据存储的副产品,通过本文的相关步骤可以将一个大表中的数据分布到几个mongo服务器上。MongoDB的1.6版本中auto-sharding功能基本稳定并可以尝试放到生产环境下使用。因为其是auto-sharding,即mongodb通过mongos(一个自动分片模块,用于构建一个大规模的可扩展的数据库集群,这个集群可以并入动态增加的机器)自动建立一个水平扩展的数据库集群系统,将数据库分表存储在sharding的各个节点上。
阅读全文