【题解】P5461 赦免战俘
一、题目
-
现有 \(2^n\times2^n\ (n≤10)\) 名作弊者站成一个正方形方阵等候 kkksc03 的发落。kkksc03 决定赦免一些作弊者。他将正方形矩阵均分为 4 个更小的正方形矩阵,每个更小的矩阵的边长是原矩阵的一半。其中左上角那一个矩阵的所有作弊者都将得到赦免,剩下 3 个小矩阵中,每一个矩阵继续分为 4 个更小的矩阵,然后通过同样的方式赦免作弊者……直到矩阵无法再分下去为止。所有没有被赦免的作弊者都将被处以棕名处罚。
-
给出 n,请输出每名作弊者的命运,其中 0 代表被赦免,1 代表不被赦免。
二、答案
一道经典的dp题。
在写dp之前,我们需要明确以下几个东西:状态的表示,状态转移方程,边界条件和答案的
表示。
1. 状态的表示
\(dp_{i,j}\) 表示第 i 行 j 列作弊者的命运(其中 0 代表被赦免,1 代表不被赦免)。
2. 状态转移方程
\[\displaystyle\sum_{i=1}^{2^n} \displaystyle\sum_{j=1}^{2^n} dp_{i,j}=dp_{i-1,j}⊕dp_{i-1,j+1}
\]
3. 边界条件
\[dp_{\ 0,2^n+1}=1
\]
4. 答案的表示
\[\displaystyle\sum_{i=1}^{2^n} \displaystyle\sum_{j=1}^{2^n} dp_{i,j}
\]
三、时间复杂度
整体时间复杂度为 \(O({2^n}^2)\) ,也就是 \(O(2^n\times 2^n)\) ,其中 \(100\%:(n\le10)\) 。
四、空间复杂度
整体空间复杂度为 \(O({2^n}^2)\) ,也就是 \(O(2^n\times 2^n)\) ,其中 \(100\%:(n\le10)\) 。
五、AC代码
#include<bits/stdc++.h>
using namespace std;
bool ans[2000][2000];
int main() {
int n;
scanf("%d",&n);
for(int i=1;i<=(1<<n);i++) {
for(int j=1;j<=(1<<n);j++) {
ans[i][j]=1;
}
}
ans[0][(1<<n)+1]=1;
for(int i=1;i<=(1<<n);i++) {
for(int j=1;j<=(1<<n);j++) {
ans[i][j]=ans[i-1][j]^ans[i-1][j+1];
}
}
for(int i=1;i<=(1<<n);i++) {
for(int j=1;j<=(1<<n);j++) {
printf("%d ",ans[i][j]);
}
printf("\n");
}
return 0;
}