2023.5.17·

今天学习了pytroch对图片进行识别训练。

  1 import torch
  2 from torch import nn
  3 from torch.utils.data import DataLoader
  4 from torchvision import datasets
  5 from torchvision.transforms import ToTensor
  6 # Download training data from open datasets.
  7 training_data = datasets.FashionMNIST(
  8     root="data",
  9     train=True,
 10     download=True,
 11     transform=ToTensor(),
 12 )
 13 
 14 # Download test data from open datasets.
 15 test_data = datasets.FashionMNIST(
 16     root="data",
 17     train=False,
 18     download=True,
 19     transform=ToTensor(),
 20 )
 21 batch_size = 64
 22 
 23 # Create data loaders.
 24 train_dataloader = DataLoader(training_data, batch_size=batch_size)
 25 test_dataloader = DataLoader(test_data, batch_size=batch_size)
 26 
 27 for X, y in test_dataloader:
 28     print(f"Shape of X [N, C, H, W]: {X.shape}")
 29     print(f"Shape of y: {y.shape} {y.dtype}")
 30     break# Get cpu, gpu or mps device for training.
 31 device = (
 32     "cuda"
 33     if torch.cuda.is_available()
 34     else "mps"
 35     if torch.backends.mps.is_available()
 36     else "cpu"
 37 )
 38 print(f"Using {device} device")
 39 
 40 # Define model
 41 class NeuralNetwork(nn.Module):
 42     def __init__(self):
 43         super().__init__()
 44         self.flatten = nn.Flatten()
 45         self.linear_relu_stack = nn.Sequential(
 46             nn.Linear(28*28, 512),
 47             nn.ReLU(),
 48             nn.Linear(512, 512),
 49             nn.ReLU(),
 50             nn.Linear(512, 10)
 51         )
 52 
 53     def forward(self, x):
 54         x = self.flatten(x)
 55         logits = self.linear_relu_stack(x)
 56         return logits
 57 
 58 model = NeuralNetwork().to(device)
 59 print(model)
 60 loss_fn = nn.CrossEntropyLoss()
 61 optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
 62 def train(dataloader, model, loss_fn, optimizer):
 63     size = len(dataloader.dataset)
 64     model.train()
 65     for batch, (X, y) in enumerate(dataloader):
 66         X, y = X.to(device), y.to(device)
 67 
 68         # Compute prediction error
 69         pred = model(X)
 70         loss = loss_fn(pred, y)
 71 
 72         # Backpropagation
 73         loss.backward()
 74         optimizer.step()
 75         optimizer.zero_grad()
 76 
 77         if batch % 100 == 0:
 78             loss, current = loss.item(), (batch + 1) * len(X)
 79             print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")
 80 def test(dataloader, model, loss_fn):
 81     size = len(dataloader.dataset)
 82     num_batches = len(dataloader)
 83     model.eval()
 84     test_loss, correct = 0, 0
 85     with torch.no_grad():
 86         for X, y in dataloader:
 87             X, y = X.to(device), y.to(device)
 88             pred = model(X)
 89             test_loss += loss_fn(pred, y).item()
 90             correct += (pred.argmax(1) == y).type(torch.float).sum().item()
 91     test_loss /= num_batches
 92     correct /= size
 93     print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
 94 epochs = 5
 95 for t in range(epochs):
 96     print(f"Epoch {t+1}\n-------------------------------")
 97     train(train_dataloader, model, loss_fn, optimizer)
 98     test(test_dataloader, model, loss_fn)
 99 print("Done!")
100 torch.save(model.state_dict(), "model.pth")
101 print("Saved PyTorch Model State to model.pth")

 

 

posted @ 2023-05-17 21:54  阿飞藏泪  阅读(6)  评论(0编辑  收藏  举报
1 2 3
4