洛谷P1028——数的计算

 

题目描述

我们要求找出具有下列性质数的个数(包含输入的自然数nn):

先输入一个自然数nn(n \le 1000n1000),然后对此自然数按照如下方法进行处理:

  1. 不作任何处理;

  2. 在它的左边加上一个自然数,但该自然数不能超过原数的一半;

  3. 加上数后,继续按此规则进行处理,直到不能再加自然数为止.

输入格式

11个自然数nn(n \le 1000n1000)

输出格式

11个整数,表示具有该性质数的个数。

 

样例我就不打了,首先根据题目我们大致能猜出来这是一个递推的题(也就是找规律)。

然后先贴代码

#include<cstdio>
using namespace std;
int a[1010];
int main()

{
  int n,q=1,i;
  a[0]=a[1]=1;
  scanf("%d",&n);
  for(i=2;i<=n;i++){
  if(i%2==0)
  {
    a[i]=a[i-1]+a[i/2];
  }
  else
    {
      a[i]=a[i-1];
    }
  }
  printf("%d\n",a[n]);
  return 0;
}

这个题其实代码实现并不难,难在需要找到第n项与第n-1项和n/2项之间的规律,一般情况下这种题需要把他的样例都列出来,自己再思考几个答案,然后从中找规律,如果你能把题目理解的很深的话,可以把问题所求拆分来看,得到关系式,此题就是,如果下标为双数,那么第n项就等于n-1项与n/2项的和,若相反,则等于n-1项,其实一开始我也没找到思路,我用的是暴力枚举。。。。。但是跑了3个得分点就暴毙了。。。。然后我才发现的规律。

posted @ 2020-03-12 10:58  头顶凉风  阅读(208)  评论(0编辑  收藏  举报