从InputStream到ByteArrayInputStream

本篇主要分析:1.如何将byte数组适配至ByteArrayInputStream,对应与IO部分的适配器模式;2.BufferedInputStream的工作原理,对应于IO的装饰器模式,会首先研究InputStreamFilterInputStream的源代码,同时会将要谈谈软件设计中的缓存相关的知识。后面专门一章分析PipedInputStreamPipedOutStream,简单谈谈管道相关的知识,以及软件架构的想法。

1 InputStream

InputStream 是输入字节流部分,装饰器模式的顶层类。主要规定了输入字节流的公共方法。

 

package java.io;

public abstract class InputStream implements Closeable {

    private static final int SKIP_BUFFER_SIZE = 2048;  //用于skip方法,和skipBuffer相关

    private static byte[] skipBuffer;    // skipBuffer is initialized in skip(long), if needed.

 

public abstract int read() throws IOException;  //从输入流中读取下一个字节,

                                                                                             //正常返回0-255,到达文件的末尾返回-1

                                                        //在流中还有数据,但是没有读到时该方法会阻塞(block

                                                        //Java IONew IO的区别就是阻塞流和非阻塞流

                                                        //抽象方法哦!不同的子类不同的实现哦!

 

         //将流中的数据读入放在byte数组的第off个位置先后的len个位置中

         //放回值为放入字节的个数。

    public int read(byte b[], int off, int len) throws IOException {           //

         if (b == null) {

             throw new NullPointerException();

         } else if (off < 0 || len < 0 || len > b.length - off) {

             throw new IndexOutOfBoundsException();

         } else if (len == 0) {

             return 0;

         }        //检查输入是否正常。一般情况下,检查输入是方法设计的第一步

         int c = read();                                                              //读取下一个字节

         if (c == -1) {    return -1;   }                           //到达文件的末端返回-1

         b[off] = (byte)c;                                                   //放回的字节downcast

         int i = 1;                                                                        //已经读取了一个字节

         try {

             for (; i < len ; i++) {                          //最多读取len个字节,所以要循环len

                   c = read();                                       //每次循环从流中读取一个字节

                                                                                    //由于read方法阻塞,

//所以read(byte[],int,int)也会阻塞

                   if (c == -1) {            break;           }       //到达末尾,理所当然放回-1

                   b[off + i] = (byte)c;                                    //读到就放入byte数组中

             }

         } catch (IOException ee) {     }

         return i;

         //上面这个部分其实还有一点比较重要,int i = 1;在循环的外围,或许你经常见到,

         //或许你只会在循环是才声明,为什么呢?

         //声明在外面,增大了变量的生存周期(在循环外面),所以后面可以return返回

         //极其一般的想法。在类成员变量生命周期中使用同样的理念。

         //在软件设计中,类和类的关系中也是一样的。

    }        //这个方法在利用抽象方法read,某种意义上简单的Templete模式。

 

    public int read(byte b[]) throws IOException {

                   return read(b, 0, b.length);

    }                           //利用上面的方法read(byte[] b)

 

    public long skip(long n) throws IOException {

         long remaining = n;                                  //方法内部使用的、表示要跳过的字节数目,

//使用它完成一系列字节读取的循环

         int nr;

         if (skipBuffer == null)

             skipBuffer = new byte[SKIP_BUFFER_SIZE];                   //初始化一个跳转的缓存

         byte[] localSkipBuffer = skipBuffer;                                      //本地化的跳转缓存

         if (n <= 0) {    return 0;      }                           //检查输入参数,应该放在方法的开始

         while (remaining > 0) {                                      //一共要跳过n个,每次跳过部分,循环

             nr = read(localSkipBuffer, 0, (int) Math.min(SKIP_BUFFER_SIZE, remaining));

                                                        //利用上面的read(byte[],int,int)方法尽量读取n个字节  

             if (nr < 0) {  break;    }                          //读到流的末端,则返回

             remaining -= nr;                                       //没有完全读到需要的,则继续循环

         }       

         return n - remaining;//返回时要么全部读完,要么因为到达文件末端,读取了部分

    }

 

    public int available() throws IOException {                  //查询流中还有多少可以读取的字节

                   return 0;

    }

         //该方法不会block。在java中抽象类方法的实现一般有以下几种方式:

//1.抛出异常(java.util);2.“实现。象上面这种。子类在必要的时候覆盖它。

//3.“实现。下面有例子。

 

    public void close() throws IOException {}

         //关闭当前流、同时释放与此流相关的资源

 

    public synchronized void mark(int readlimit) {}

         //在当前位置对流进行标记,必要的时候可以使用reset方法返回。

         //markSupport可以查询当前流是否支持mark

 

    public synchronized void reset() throws IOException {

                   throw new IOException("mark/reset not supported");

    }

         //mark过的流进行复位。只有当流支持mark时才可以使用此方法。

         //看看markavailablereset方法。体会为什么?!

 

    public boolean markSupported() {           //查询是否支持mark

                   return false;

    }                 //绝大部分不支持,因此提供默认实现,返回false。子类有需要可以覆盖。

        

}

 

2 FilterInputStream

       这是字节输入流部分装饰器模式的核心。是我们在装饰器模式中的Decorator对象,主要完成对其它流装饰的基本功能。下面是它的源代码:

package java.io;

 

//该类对被装饰的流进行基本的包裹。不增加额外的功能。

//客户在需要的时候可以覆盖相应的方法。具体覆盖可以在ByteInputStream中看到!

public class FilterInputStream extends InputStream {

    protected volatile InputStream in;                       //将要被装饰的字节输入流

 

    protected FilterInputStream(InputStream in) {   //通过构造方法传入此被装饰的流

                   this.in = in;

    }

         //装饰器的代码特征:被装饰的对象一般是装饰器的成员变量

         //上面几行可以看出。

 

         //下面这些方法,完成最小的装饰――0装饰,只是调用被装饰流的方法而已

 

    public int read() throws IOException {

                   return in.read();

    }

 

    public int read(byte b[]) throws IOException {

                   return read(b, 0, b.length);

    }

 

    public int read(byte b[], int off, int len) throws IOException {

                   return in.read(b, off, len);

    }

 

    public long skip(long n) throws IOException {

                   return in.skip(n);

    }

 

    public int available() throws IOException {

                   return in.available();

    }

 

    public void close() throws IOException {

                   in.close();

    }

 

    public synchronized void mark(int readlimit) {

                   in.mark(readlimit);

    }

 

    public synchronized void reset() throws IOException {

                   in.reset();

    }

 

    public boolean markSupported() {

                   return in.markSupported();

}

//以上的方法,都是通过调用被装饰对象in完成的。没有添加任何额外功能

//装饰器模式中的Decorator对象,不增加被装饰对象的功能。

//它是装饰器模式中的核心。更多关于装饰器模式的理论请阅读博客中的文章。

}

 

       以上分析了所有字节输入流的公共父类InputStream和装饰器类FilterInputStream类。他们是装饰器模式中两个重要的类。更多细节请阅读博客中装饰器模式的文章。下面将讲解一个具体的流ByteArrayInputStream,不过它是采用适配器设计模式。

 

3 ByteArrayByteArrayInputStream的适配

// ByteArrayInputStream内部有一个byte类型的buffer

//很典型的适配器模式的应用――将byte数组适配流的接口。

//下面是源代码分析:

 

package java.io;

 

public class ByteArrayInputStream extends InputStream {

    protected byte buf[];                //内部的buffer,一般通过构造器输入

protected int pos;                   //当前位置的cursor。从0byte数组的长度。

//byte[pos]就是read方法读取的字节

    protected int mark = 0;           //mark的位置。

    protected int count;                          //流中字节的数目。不一定与byte[]的长度一致???

 

    public ByteArrayInputStream(byte buf[]) {//从一个byte[]创建一个ByteArrayInputStream

         this.buf = buf;                                                      //初始化流中的各个成员变量

        this.pos = 0;

         this.count = buf.length;                              //count就等于buf.length

    }

 

    public ByteArrayInputStream(byte buf[], int offset, int length) {                //构造器

         this.buf = buf;

        this.pos = offset;                                                                                      //与上面不同

         this.count = Math.min(offset + length, buf.length);

        this.mark = offset;                                                                                             //与上面不同

    }

 

    public synchronized int read() {                                           //从流中读取下一个字节

                   return (pos < count) ? (buf[pos++] & 0xff) : -1; //返回下一个位置的字节

                                                                                                                //流中没有数据则返回-1

    }

 

         //下面这个方法很有意思!从InputStream中可以看出其提供了该方法的实现。

         //为什么ByteArrayInputStream要覆盖此方法呢?

         //同样的我们在Java Collections Framework中可以看到:

//AbstractCollection利用iterator实现了Collecion接口的很多方法。但是,

//ArrayList中却有很多被子类覆盖了。为什么如此呢??

 

    public synchronized int read(byte b[], int off, int len) {

         if (b == null) {                                                               //首先检查输入参数的状态是否正确

             throw new NullPointerException();

         } else if (off < 0 || len < 0 || len > b.length - off) {

             throw new IndexOutOfBoundsException();

         }

         if (pos >= count) {             return -1;             }

         if (pos + len > count) {      len = count - pos;         }

         if (len <= 0) {           return 0;     }

         System.arraycopy(buf, pos, b, off, len);                     //java中提供数据复制的方法

         pos += len;

         return len;

    }

         //出于速度的原因!他们都用到System.arraycopy方法。想想为什么?

         //某些时候,父类不能完全实现子类的功能,父类的实现一般比较通用。

//当子类有更有效的方法时,我们会覆盖这些方法。这样可是不太OO的哦!

 

         //下面这个方法,在InputStream中也已经实现了。

//但是当时是通过将字节读入一个buffer中实现的,好像效率低了一点。

//看看下面这段代码,是否极其简单呢?!

    public synchronized long skip(long n) {

         if (pos + n > count) {    n = count - pos;       }        //当前位置,可以跳跃的字节数目

         if (n < 0) {       return 0;     }                                    //小于0,则不可以跳跃

         pos += n;                                                                              //跳跃后,当前位置变化

         return n;

    }                                    //InputStream中的方法简单、高效吧!

 

    public synchronized int available() {

                   return count - pos;

    }

         //查询流中还有多少字节没有读取。

//在我们的ByteArrayInputStream中就是当前位置以后字节的数目。  

 

    public boolean markSupported() {                   

                   return true;

    }        //ByteArrayInputStream支持mark所以返回true

 

    public void mark(int readAheadLimit) {            

                   mark = pos;

    }

//在流中当前位置mark

//在我们的ByteArrayInputStream中就是将当前位置赋给mark变量。

//读取流中的字节就是读取字节数组中当前位置向后的的字节。

 

    public synchronized void reset() {

                   pos = mark;

    }

         //重置流。即回到mark的位置。

 

    public void close() throws IOException {   }

         //关闭ByteArrayInputStream不会产生任何动作。为什么?仔细考虑吧!!

}

 

上面我们分3小节讲了装饰器模式中的公共父类(对应于输入字节流的InputStream)、Decorator(对应于输入字节流的FilterInputStream)和基本被装饰对象(对应于输入字节流的媒体字节流)。下面我们就要讲述装饰器模式中的具体的包装器(对应于输入字节流的包装器流)。

4 BufferedInputStream

4.1原理及其在软件硬件中的应用

       1.read――read(byte[] ,int , int)

       2.BufferedInputStream

       3.《由一个简单的程序谈起》

       4. Cache

       5.Pool

       6.Spling Printer

       (最近比较忙,不讲了!)

4.2 BufferedInputStream源代码分析

 

package java.io;

 

import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;

 

//该类主要完成对被包装流,加上一个缓存的功能

public class BufferedInputStream extends FilterInputStream {

    private static int defaultBufferSize = 8192;                                      //默认缓存的大小

    protected volatile byte buf[];                                                            //内部的缓存

    protected int count;                                                                                            //buffer的大小

    protected int pos;                                                                               //buffercursor的位置

    protected int markpos = -1;                                                                     //mark的位置

    protected int marklimit;                                                                            //mark的范围

 

//原子性更新。和一致性编程相关

    private static final

        AtomicReferenceFieldUpdater<BufferedInputStream, byte[]> bufUpdater =

        AtomicReferenceFieldUpdater.newUpdater (BufferedInputStream.class,  byte[].class, "buf");

 

    private InputStream getInIfOpen() throws IOException {  //检查输入流是否关闭,同时返回被包装流

        InputStream input = in;

         if (input == null)    throw new IOException("Stream closed");

        return input;

    }

 

    private byte[] getBufIfOpen() throws IOException {                       //检查buffer的状态,同时返回缓存

        byte[] buffer = buf;

         if (buffer == null)   throw new IOException("Stream closed");            //不太可能发生的状态

        return buffer;

    }

 

    public BufferedInputStream(InputStream in) {                               //构造器

                   this(in, defaultBufferSize);                                                              //指定默认长度的buffer

    }

 

    public BufferedInputStream(InputStream in, int size) {                           //构造器

                   super(in);

        if (size <= 0) {                                                                                         //检查输入参数

            throw new IllegalArgumentException("Buffer size <= 0");

        }

                   buf = new byte[size];                                                                     //创建指定长度的buffer

    }

 

         //从流中读取数据,填充如缓存中。

    private void fill() throws IOException {

        byte[] buffer = getBufIfOpen();                            //得到buffer

         if (markpos < 0)

             pos = 0;                                                             //mark位置小于0,此时pos0

         else if (pos >= buffer.length)                               //pos大于buffer的长度

             if (markpos > 0) {        

                   int sz = pos - markpos;                            //

                   System.arraycopy(buffer, markpos, buffer, 0, sz);

                   pos = sz;

                   markpos = 0;

             } else if (buffer.length >= marklimit) {                 //buffer的长度大于marklimit时,mark失效

                   markpos = -1;                                                   //

                   pos = 0;                                                             //丢弃buffer中的内容

             } else {                                                                         //buffer的长度小于marklimit时对buffer扩容

                   int nsz = pos * 2;

                   if (nsz > marklimit)           nsz = marklimit;//扩容为原来的2倍,太大则为marklimit大小

                   byte nbuf[] = new byte[nsz];                    

                   System.arraycopy(buffer, 0, nbuf, 0, pos);        //buffer中的字节拷贝如扩容后的buf

                if (!bufUpdater.compareAndSet(this, buffer, nbuf)) {

                                                                                                                         //buffer在被操作时,不能取代此buffer

                    throw new IOException("Stream closed");

                }

                buffer = nbuf;                                                               //将新buf赋值给buffer

             }

        count = pos;

         int n = getInIfOpen().read(buffer, pos, buffer.length - pos);

        if (n > 0)     count = n + pos;

    }

 

    public synchronized int read() throws IOException { //读取下一个字节

         if (pos >= count) {                                                                 //到达buffer的末端

             fill();                                                                    //就从流中读取数据,填充buffer

             if (pos >= count)  return -1;                                //读过一次,没有数据则返回-1

         }

         return getBufIfOpen()[pos++] & 0xff;                           //返回buffer中下一个位置的字节

    }

 

    private int read1(byte[] b, int off, int len) throws IOException {                 //将数据从流中读入buffer

         int avail = count - pos;                                                                             //buffer中还剩的可读字符

         if (avail <= 0) {                                                                                        //buffer中没有可以读取的数据时

             if (len >= getBufIfOpen().length && markpos < 0) {             //将输入流中的字节读入b

                   return getInIfOpen().read(b, off, len);

             }

             fill();                                                                                                //填充

             avail = count - pos;

             if (avail <= 0) return -1;

         }

         int cnt = (avail < len) ? avail : len;                                                  //从流中读取后,检查可以读取的数目

         System.arraycopy(getBufIfOpen(), pos, b, off, cnt);            //将当前buffer中的字节放入b的末端

         pos += cnt;

         return cnt;

    }

 

 

    public synchronized int read(byte b[], int off, int len)throws IOException {

        getBufIfOpen();                                                                             // 检查buffer是否open

        if ((off | len | (off + len) | (b.length - (off + len))) < 0) {            //检查输入参数是否正确

             throw new IndexOutOfBoundsException();

         } else if (len == 0) {

            return 0;

        }

         int n = 0;

        for (;;) {

            int nread = read1(b, off + n, len - n);

            if (nread <= 0)     return (n == 0) ? nread : n;

            n += nread;

            if (n >= len)     return n;

            // if not closed but no bytes available, return

            InputStream input = in;

            if (input != null && input.available() <= 0)     return n;

        }

    }

 

 

    public synchronized long skip(long n) throws IOException {

        getBufIfOpen();                                        // 检查buffer是否关闭

         if (n <= 0) {    return 0;      }                 //检查输入参数是否正确

         long avail = count - pos;                    //buffered中可以读取字节的数目

        if (avail <= 0) {                                          //可以读取的小于0,则从流中读取

            if (markpos <0)  return getInIfOpen().skip(n); //mark小于0,则mark在流中      

            fill();                                  // 从流中读取数据,填充缓冲区。

            avail = count - pos;                                   //可以读的取字节为buffer的容量减当前位置

            if (avail <= 0)     return 0;

        }       

        long skipped = (avail < n) ? avail : n;      

        pos += skipped;                                       //当前位置改变

        return skipped;

    }

 

    public synchronized int available() throws IOException {

                   return getInIfOpen().available() + (count - pos);                 

    }

         //该方法不会block!返回流中可以读取的字节的数目。

         //该方法的返回值为缓存中的可读字节数目加流中可读字节数目的和

 

    public synchronized void mark(int readlimit) {  //当前位置处为mark位置

         marklimit = readlimit;

         markpos = pos;

    }

 

    public synchronized void reset() throws IOException {

        getBufIfOpen(); // 缓冲去关闭了,肯定就抛出异常!程序设计中经常的手段

                   if (markpos < 0)     throw new IOException("Resetting to invalid mark");

                   pos = markpos;

    }

 

    public boolean markSupported() {           //该流和ByteArrayInputStream一样都支持mark

                   return true;

    }

 

         //关闭当前流同时释放相应的系统资源。

    public void close() throws IOException {

        byte[] buffer;

        while ( (buffer = buf) != null) {

            if (bufUpdater.compareAndSet(this, buffer, null)) {

                InputStream input = in;

                in = null;

                if (input != null)    input.close();

                return;

            }

            // Else retry in case a new buf was CASed in fill()

        }

    }

}

posted on 2013-07-13 17:20  Java码界探秘  阅读(378)  评论(0编辑  收藏  举报

导航